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In this paper, we develop a finite element method for the temporal discretiza-
tion of the equations of motion. The continuous Galerkin method is based upon
a weighted-residual statement of Hamilton’s canonical equations. We show that the
proposed finite element formulation is energy conserving in a natural sense. A family
of implicit one-step algorithms is generated by specifying the polynomial approxi-
mation in conjunction with the quadrature formula used for the evaluation of time
integrals. The numerical implementation of linear, quadratic, and cubic time finite
elements is treated in detail for the model problem of a circular pendulum. In ad-
dition to that, concerning dynamical systems with several degrees of freedom, we
address the design of nonstandard quadrature rules which retain the energy conser-
vation property. Our numerical investigations assess the effect of numerical quadra-
ture in time on the accuracy and energy conservation property of the time-stepping
schemes. c© 2000 Academic Press
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1. INTRODUCTION

In this paper we develop a finite element formulation for the temporal discretization of
the equations of motion. We restrict ourselves to holonomic dynamical systems formulated
in terms of independent generalized coordinates. The newly developed time finite element
formulation is based upon the temporal discretization of Hamilon’s canonical equations by
means of the continuous Galerkin (cG) method.

Following the terminology of Erikssonet al. [7] the term “cG(k) method” refers to trial
functions consisting of continuous piecewise polynomials of degreek and test functions
consisting of discontinuous piecewise polynomials of degreek− 1. The cG method has
apparently been introduced by Hulme [16] for the numerical solution of systems of first-
order ordinary differential equations.
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We show that the cG method in conjunction with Hamilton’s equations is inherently en-
ergy conserving. That is, provided that the time integrals appearing in the time finite element
formulation are calculated exactly, the resulting time-stepping scheme is exactly energy
conserving. Of course, exact calculation of the time integrals is rarely feasible. Therefore,
we investigate the effect of standard quadrature rules on algorithmic energy conservation.
Moreover, we show that it is possible to maintain exact algorithmic energy conservation by
the design of nonstandard quadrature formulas. Concerning the application of quadrature
rules it is interesting to note that the cG(k) method yields time-stepping schemes that co-
incide withk-stage Gauss Runge–Kutta methods ifk-point Gaussian quadrature formulas
are used. This was already shown in Hulme [16].

Nonlinear elastodynamics is but one field where algorithmic energy conservation appears
to be a desirable property of time-stepping schemes, especially from the viewpoint of
numerical stability (see, e.g., Hughes [14] and Gonzalez and Simo [11]). In this context
Simo and Tarnow [20] and Crisfield and Shi [6] have shown that the lack of algorithmic
energy conservation can lead to dramatic blowup behavior. As a remedy they render the mid-
point rule energy preserving by employing a modified stress calculation. Another approach
relies on the application of Lagrange multipliers for the algorithmic enforcement of the
energy constraint (see, e.g., Hugheset al. [15] or Kuhl and Ramm [17]). Alternatively, the
energy constraint equation may be used to solve for an additional scalar variable which
is introduced into the time-stepping algorithm in order to fulfill energy conservation (see,
e.g., LaBudde and Greenspan [18] and Simoet al. [21]). Furthermore, the application of
“discrete gradient” methods to Hamiltonian systems yields energy conserving time-stepping
schemes (see Gonzalez [10] and McLachlanet al. [19] and references therein).

The variational formulation used herein can be related to Hamilton’s law of varying ac-
tion as well as Hamilton’s principle (see Remark 3.1 below), which have previously been
the starting point for the development of alternative time-stepping schemes. For example,
Hamilton’s principle in conjunction with the Ritz method can be employed for the temporal
discretization of dynamical systems with specified end-point conditions (see, e.g., Gillilan
and Wilson [8] or the early work of Argyris and Scharpf [1]). Another approach relies on
the introduction of a discrete variational principle which can be used to obtain the associ-
ated discrete Euler–Lagrange equations (see Wendlandt and Marsden [23] and references
therein). Hamilton’s law of varying action is the starting point of the discretization method
advocated by Bailey [3], where global polynomial approximations of the displacements are
applied.

An outline of the remainder of the paper is as follows. In section 2 we give a brief sum-
mary of the Hamiltonian formulation of the equations of motion needed for the subsequent
developments. Section 3 contains the temporal discretization of Hamilton’s equations by
means of the continuous Galerkin method. Making use of the subparametric finite element
concept along with Lagrangean shape functions we arrive at the general finite element
formulation. In addition to that, the algorithmic conservation properties are investigated,
namely (i) conservation of total energy and (ii) conservation of generalized momenta corre-
sponding to cyclic coordinates. Section 4 is devoted to computational aspects in the realm
of one-dimensional motion. In particular, we give a detailed account of the numerical im-
plementation of the method related tok= 1, 2, 3. In this connection, numerical simulations
are given to examine algorithmic energy conservation as well as the error in the generalized
displacements/momenta. Computational aspects pertaining to systems with several degrees
of freedom are addressed in Section 5. The corresponding numerical example deals with a
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planar double pendulum. Conclusions are drawn in Section 6. The connection with often
applied Gauss Runge–Kutta methods is verified in the Appendix.

2. HAMILTONIAN FORMULATION OF THE EQUATIONS OF MOTION

We summarize below some results of classical mechanics which will be needed for the
subsequent development of the time-stepping algorithms. In particular, we concentrate on
the Hamiltonian formulation of the equations of motion which are the starting point for
the Galerkin approximations developed below. We refer to the books of Goldstein [9] and
Arnold [2] for a more detailed account of the subject.

Let us consider a holonomic dynamical system withndof degrees of freedom whose con-
figuration is expressed in terms of independent generalized coordinatesqi , i = 1, 2, . . . ,ndof.
Eachqi may be considered to be a component of a generalized displacement vectorq in
a ndof-dimensional configuration space. Furthermore, we assume that all the generalized
forces Qi are associated with a conservative force fieldQ=−∂qV , where the potential
energyV(q, t) is a function ofq and timet . Let T(q, q̇, t), with q̇= dq/dt , be the total
kinetic energy of the system andL = T −V the Lagrangian function. Then the standard
form of Lagrange’s equations may be written as

d

dt
(∂q̇L)− ∂qL = 0. (1)

In general the application of Lagrange’s equations yields a set of nonlinear differential
equations of the form̈q+ f(q, q̇, t)= 0, that is,ndof second-orderequations of motion. In
view of our numerical developments we prefer the Hamiltonian formulation of the dynamical
system in terms of 2ndof first-orderequations. The Hamiltonian function is defined by

H(q, p, t) = p · q̇− L(q, q̇, t), (2)

in whichq̇ is implicitly expressed in terms of the generalized momentum vectorp according
to the relationp= ∂q̇L. The system of Lagrange’s equations (1) is equivalent to the canonical
equations of Hamilton given by

q̇ = ∂p H
(3)

ṗ = −∂q H.

Accordingly, the motion is described by means of 2ndof first-order equations of motion
expressed in terms of 2ndof independentvariables (q(t), p(t)), which are the coordinates
of phase space.

In the present context we are especially interested in (scleronomic) natural systems
where the kinetic energy is expressed as a homogeneous quadratic function of thepi s; that
is, T = 1

2p · M−1p, whereM(q) is the generalized inertia matrix. For natural systems the
Hamiltonian function is equal to the total energy; that is,

H = T + V. (4)

Hamilton’s equations (3) imply thaṫH = ∂t H such that for an autonomous natural system,
where the Hamiltonian function does not depend explicitly on time (∂t H = 0), the total
energy is a constant of the motion.
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3. PETROV–GALERKIN FINITE ELEMENT FORMULATION

In view of a Galerkin approximation of Hamilton’s canonical equations (3) we form the
weighted-residual statement for each equation in (3). Lettingδp andδq be test functions
sufficiently smooth on the time interval of interestI = [t0, t0+ T ], we have

t0+T∫
t0

[{q̇− ∂p H} · δp− {ṗ+ ∂q H} · δq] dt = 0. (5)

Note that (5) leads to the 2ndof canonical equations since bothδp and δq are arbitrary.
Equation (5) lies at the heart of the finite element method developed in the sequel.

Remark 3.1. Equation (5) can be related to Hamilton’s law of varying action. To this
end, integrate the termδq · ṗ by parts, which yields

δ

t0+T∫
t0

[p · q̇− H(p, q, t)] dt − [p · δq]t0+T
t0 = 0. (6)

Here, the operatorδ is to be interpreted as contemporaneous variation, such thatδH =
∂p H · δp+ ∂q H · δq. Alternatively, in the Lagrangian formulation, (6) can be written as

δ

t0+T∫
t0

L(q, q̇, t) dt − [∂q̇L · δq]t0+T
t0 = 0. (7)

This equation is often called Hamilton’s law of varying action (see, e.g., Williams [24],
Appendix E). If one imposes the stationarity condition of vanishingδq at the endpointst0
andt0+ T , (6) coincides with the modified Hamilton’s principle (see, e.g., Goldstein [9],
Chapter 8-5), and (7) coincides with Hamilton’s principle.

3.1. Outline of the Time-Stepping Schemes

Consider a partition of the time interval of interestI = [t0, t0+T ] into a number of finite
elements of (time step) sizehn= tn− tn−1, such thatt0 < t1 < t2 < · · · < tN = t0+ T and

t0+T∫
t0

[· · ·] dt =
N∑

n=1

tn∫
tn−1

[· · ·] dt. (8)

On each subintervalIn= [tn−1, tn], we consider piecewise smooth polynomial approxima-
tions of the trial functionsq(t) andp(t), continuous across the element boundaries. In par-
ticular, we concentrate on the Lagrange family of finite elements consisting of polynomials
of degreek. In addition to that, we employ piecewise smooth polynomial approximations
of degreek− 1 for the test functionsδq(t) andδp(t), discontinuous across the element
boundaries.

In the following we consider a representative finite element onIn with k + 1 nodes.
For convenience of subsequent element calculations, we introduce a transformation to a
master element using a local coordinateα, with its origin at the left endpoint andα= 1 at
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FIG. 1. Partition of the time intervalI = [t0, t0 + T ] into N finite elements on the subintervalsIn= [tn−1, tn]
and master elementI with k+ 1 nodes.

the right endpoint, as shown in Fig. 1. Lett ∈ In = [tn−1, tn] transform toα ∈ Î = [0, 1],
according to

α(t) = t − tn−1

tn − tn−1
; (9)

see also Fig. 1. Thus, for a(k+ 1)-node element the domains of the global and local descrip-
tions are related by the transformationα: [tn−1, tn]→ [α1, αk+1], such thatα(tn−1)=α1 and
α(tn)=αk+1.

The trial functions may now be approximated by continuous piecewise polynomials of
degreek, according to

qh(α) =
k+1∑
I=1

MI (α)qI

and

ph(α) =
k+1∑
I=1

MI (α)pI , (10)

whereMI (α) are nodal shape functions corresponding to Lagrange polynomials of degree
k on the master elementÎ , given by

MI (α) =
k+1∏
J=1
J 6=I

α − αJ

αI − αJ
, 1≤ I ≤ k+ 1. (11)

Since MI (αK )= δI K , the Kronecker delta, the coefficients in (10) are the nodal values
qI = q(αI ) andpI = p(αI ) of the generalized displacements and momenta, respectively.
Note that the resulting global approximation of the trial functions remains C0 continuous.

Similarly, the test functionsδq(α) andδp(α) are approximated by piecewise polynomials
of reduced degreek− 1, according to

δqh(α) =
k∑

I=1

M̃ I (α)δqI
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and

δph(α) =
k∑

I=1

M̃ I (α)δpI , (12)

whereM̃ I (α) are reduced shape functions consisting of polynomials of degreek− 1. Note
that the finite element approximation of the test functions leads to possible discontinuities
across the element boundaries; i.e., at timetn, there may exist jumps [[δqh

n]] and [[δph
n]],

where [[{•}n]] = limε→0+ [{•}(tn + ε)− {•}(tn − ε)]. From now on we omit the superscript
h without danger of confusion. We may write

q′(α) =
k+1∑
I=1

M ′I (α)qI =
k∑

I=1

M̃ I (α)q̃I , (13)

where{•}′ = d{•}/dα and q̃I are linear combinations of theqI s. We refer to Table I for
examples involving nodal shape functionsMI (α) of polynomial degree 1≤ k≤ 3, along
with corresponding shape functions̃M I (α) and the related̃qI s as combinations of the
nodal valuesqI . Analogous to (13), we may write

p′(α) =
k+1∑
I=1

M ′I (α)pI =
k∑

I=1

M̃ I (α)p̃I , (14)

where again thẽpI s are linear combinations of the nodal valuespI , analogous to the relations
between thẽqI s and theqI s given in Table I.

Due to the fact that the resulting global approximation of the test functions allows in-
terelement discontinuities we obtain a recursive time-stepping scheme. Since the global
approximation of the trial functions is continuous, the formulation belongs to a Petrov–
Galerkin method where the trial and test spaces are different.

Next we introduce the finite element approximations (10) and (12) into the weak form
(5) of Hamilton’s equations. With regard to the arbitrariness of theδqI s andδpI s on each

TABLE I

Nodal Shape FunctionsMI (α) for Polynomial Approximations of Degreesk = 1, k = 2,

and k = 3 along with Shape FunctionsM̃I (α) and Associated Values qI

MI (α) M̃ I (α) q̃I (p̃I analogously)

k = 1 M1 = 1− α M̃1 = 1 q̃ = q2 − q1

M2 = α
k = 2 MI = [2α − 1][α − 1] M̃1 = 1− α q̃1 = −3q1 + 4q2 − q3

M2 = −4[α2 − α] M̃2 = α q̃2 = q1 − 4q2 + 3q3

M3 = [2α − 1]α

k = 3 M1 = − 9
2
[α − 1

3
][α − 2

3
][α − 1] M̃1 = [2α − 1][α − 1] q̃1 = − 11

2
q1 + 9q2 − 9

2
q3 + q4

M2 = 27
2

[α − 2
3
][α − 1]α M̃2 = −4[α2 − α] q̃2 = 1

8
q1 − 27

8
q2 + 27

8
q3 − 1

8
q4

M3 = − 27
2

[α − 1
3
][α − 1]α M̃3 = [2α − 1]α q̃3 = −q1 + 9

2
q2 − 9q3 + 11

2
q4

M4 = 9
2
[α − 1

3
][α − 2

3
]α
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subintervalIn, we obtain the following system of equations,

k∑
J=1

1∫
0

M̃ I M̃J dα q̃J − hn

1∫
0

M̃I ∂p H dα = 0

(15)
k∑

J=1

1∫
0

M̃ I M̃ J dα p̃J − hn

1∫
0

M̃ I ∂q H dα = 0,

for I = 1, . . . , k. Depending on the chosen polynomial degreek of the finite element approx-
imation, the equations in (15) furnish distinct recurrence formulas for the calculation of the
nodal variablesqI andpI , for I = 2, . . . , k+1. Moreover, on each successive time interval
In= [tn−1, tn], the nodal quantities at timetn−1, i.e.,q1= q(α(tn−1)) andp1= p(α(tn−1)),
are given due to the global continuity of the trial functions.

3.2. Algorithmic Conservation Properties

Next we show that the time finite element formulation developed above inherently con-
serves the Hamiltonian function in the case of autonomous systems. In addition to that
we show that the resulting time-stepping schemes automatically preserve the generalized
momenta corresponding to cyclic coordinates.

Conservation of the Hamiltonian.Scalar multiplication of (15)1 and (15)2 with p̃I and
q̃I , respectively, and subsequent summation yields

k∑
I ,J=1

1∫
0

M̃ I M̃ J dα p̃I · q̃J − hn

k∑
I=1

1∫
0

M̃ I ∂p H dα · p̃I = 0

(16)

−
k∑

I ,J=1

1∫
0

M̃ I M̃ J dα p̃J · q̃I − hn

k∑
I=1

1∫
0

M̃ I ∂q H dα · q̃I = 0.

Addition of (16)1 and (16)2 leads to

k∑
I=1

 1∫
0

M̃ I ∂q H dα · q̃I +
1∫

0

M̃ I ∂p H dα · p̃I

 = 0. (17)

Referring to (13) and (14), (17) may also be written in the form

1∫
0

[∂q H · q′(α)+ ∂p H · p′(α)] dα = 0. (18)

On the other hand, the Fundamental Theorem of Calculus implies

Hn − Hn−1 = H(q(α), p(α), α)
∣∣α=1
α=0 =

1∫
0

[
d

dα
H(q(α), p(α), α)

]
dα

=
1∫

0

[∂q H · q′(α)+ ∂p H · p′(α)+ ∂αH ] dα. (19)
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Thus (18) leads to

Hn = Hn−1+
tn∫

tn−1

∂t H dt. (20)

Accordingly, in the autonomous case, whereH = H(q, p) and therefore∂t H = 0, the algo-
rithmic phase flow generated by (15) preserves the Hamiltonian function in the sense that
Hn= Hn−1. That is, for any polynomial degreek of the finite element approximation, the
Hamiltonian is conserved at the end of each successive time intervalIn= [tn−1, tn].

Cyclic coordinates. To see what happens if cyclic coordinates appear, consider (15)2,
which, after summation overI = 1, . . . , k, yields

1∫
0

k∑
I=1

M̃ I

k∑
J=1

M̃ J p̃J dα + hn

1∫
0

k∑
I=1

M̃ I ∂q H dα = 0. (21)

Since the Lagrangean shape functions fulfill the relation
∑k

I=1 M̃ I = 1 and, in view of (14),
p′(α)= ∑k

I=1 M̃ I (α)p̃I , Eq. (21) leads to

p(1)− p(0) = −hn

1∫
0

∂q H dα. (22)

Hence, ifqi is a cyclic coordinate, i.e.,∂H/∂qi = 0, then it follows from (22) that the
generalized momentumpi associated withqi is conserved by the algorithm in the sense
that pi (α(tn))= pi (α(tn−1)).

4. ONE-DIMENSIONAL MODEL PROBLEM

In this section we apply the general method developed above to the case of one-
dimensional motion. In particular, we give a detailed account of the numerical implemen-
tation of the time-stepping algorithms emanating from the formulas in (15) for polynomial
degreesk= 1, k= 2, andk= 3. We focus our numerical experiments on the accuracy
and energy conserving property of the time-stepping schemes. In this context the specific
quadrature rules employed play an important role.

Circular pendulum. We consider the motion of a particle of massm suspended by a
massless rod of lengthl (see Fig. 2). In particular, we investigate the oscillatory motion with
initial conditionsq=π/2 andp= 0. The kinetic energy of the particle isT = 1

2ml2q̇2 and
the potential energy may be written asV =−mgl cosq, such that the Lagrangian function is
L(q, q̇)= 1

2ml2q̇2+mglcosq. Lagrange’s equation furnishes the equation of motion in the
form q̈+g/ l sinq= 0. Furthermore, we obtainp= ∂q̇ L =ml2q̇, such that the Hamiltonian
function, being equal to the total energy, takes the form

H(q, p) = T(p)+ V(q) = p2

2ml2
−mglcosq. (23)

Now the expressions∂q H = ∂qV and∂pH = p/[ml2], can be inserted into the formulas of
the temporal finite element method in (15). Referring to (10), we havep(α)= ∑k+1

I=1 MI (α)
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FIG. 2. Circular pendulum and phase curve corresponding to initial conditionsq=π/2 andp= 0.

pI , such that (15) may be written in the form

k∑
J=1

1∫
0

M̃ I M̃ J dα q̃J − hn

ml2

k+1∑
J=1

1∫
0

M̃ I M̃ J dα pJ = 0

(24)
k∑

J=1

1∫
0

M̃ I M̃ J dα p̃J + hn

1∫
0

M̃ I ∂qV dα = 0

for I = 1, . . . , k and with∂qV =mglsinq. The equations in (24) constitute the foundation of
a family of implicit one-step methods. Essentially two additional steps have to be performed
in order to obtain a particular time-stepping scheme.

1. The selection of the polynomial degreek leads to the corresponding finite element
formulation. Concerning the integrals in (24) involving only the shape functionsMJ and
M̃ I , exact integration can be readily performed.

2. Eventually, a specific time-stepping algorithm is completely defined by the evaluation
of
∫ 1

0 M̃ I ∂qV dα in (24). In what follows we shall investigate the influence ofnumerical
quadratureon the accuracy and energy conserving property of the related algorithm. This
point is of crucial interest especially with regard to dynamical systems with more than one
degree of freedom where exact integration is rarely feasible.

4.1. Linear Elements

First we consider the casek= 1 corresponding to linear trial functions. Referring to
Table I and (24), we obtain the particular finite element formulation given by

q2− q1− hn

2ml2
[ p1+ p2] = 0

(25)

P2− p1+ hn

1∫
0

∂qV dα = 0,

with ∂qV =mglsinq. Recall that, according to the notation introduced above, the nodal
quantities (q1, p1) are associated with timetn−1 and (q2, p2) are associated with timetn;



INHERENTLY ENERGY CONSERVING TIME FINITE ELEMENTS 97

furthermore,hn= tn− tn−1. The time-stepping algorithm is completely specified by the
quadrature employed for the evaluation of the integral in (25).

Exact quadrature. The exact calculation of the integral in (25) does not pose any diffi-
culties in the present one-dimensional context. In fact, the following identity holds,

1∫
0

∂qV dα = V2− V1

q2− q1
, (26)

whereV1=V(q1), the potential energy at timetn−1. Analogously,V2=V(q2), the potential
energy at timetn. The validity of (26) follows from the Fundamental Theorem of Calculus,
which implies

V2− V1 = V(q(α))
∣∣α=1
α=0 =

1∫
0

[
d

dα
V(q(α))

]
dα

=
1∫

0

∂qV q′(α) dα =
1∫

0

∂qV dα[q2− q1], (27)

where the relationq′(α) = q2 − q1 has been used, which holds in the present casek= 1.
Accordingly, the time-stepping scheme in (25) may now be written alternatively as

q2− q1− hn

2ml2
[ p1+ p2] = 0

(28)

p2− p1+ hn
V2− V1

q2− q1
= 0,

which reveals a surprising result: The time-stepping scheme in (28) coincides with the
method of Greenspan [12] (cf. Eqs. (3.5) and (3.6) in [12]). Greenspan’s method covers con-
servative one-dimensional initial-value problems of the formq̈= f (q), with f =−dV/dq,
and relies on a difference method which, by design, is energy conserving.

In the present case the energy conserving property of the algorithm (28) follows directly
from (20).

Numerical quadrature. In analogy to the spatial finite element method we next inves-
tigate the approximation of the integral in (25) by means of different quadrature rules. In
this context the main question is how the accuracy and the conservation properties of the
respective time-stepping method will be affected by the quadrature.

Midpoint rule. Let us consider the midpoint approximation of the integral in (25) given
by

1∫
0

∂qV dα ≈ ∂qV(q(1/2)), (29)

whereq(1/2) is the midpoint value ofq, i.e., atα= 1/2, such thatq(1/2)= 1
2[q1 + q2].

The resulting time-stepping scheme reads

q2− q1− hn

2ml2
[ p1+ p2] = 0

(30)
p2− p1+ hn∂qV(q(1/2)) = 0.
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Accordingly, the algorithmic form (30) coincides with the midpoint rule applied to the
considered nonlinear problem; i.e.,q̈ + g/ l sin q= 0. It is well-known that the midpoint
rule is not energy conserving in the nonlinear regime (see, e.g., Simoet al. [21]). We refer
to Section 4.1.3 for related numerical investigations.

Trapezoidal rule. Alternatively, the computation of the integral in (25) by means of the
trapezoidal rule yields

1∫
0

∂qV dα ≈ 1

2
[∂qV(q1)+ ∂qV(q2)], (31)

such that the corresponding time-stepping algorithm is given by

q2− q1− hn

2ml2
[ p1+ p2] = 0

(32)

p2− p1+ hn
1

2
[∂qV(q1)+ ∂qV(q2)] = 0.

It can be easily verified that the time-stepping scheme (32) coincides with the average
acceleration method applied to the considered nonlinear problem; i.e.,q̈+ g/ l sinq= 0.
It is well-known that the average acceleration method is not energy conserving in the
nonlinear regime (see, e.g., Hughes [14]). We refer to Section 4.1.3 for related numerical
investigations.

Gaussian quadrature. In analogy to customary spatial finite element formulations, the
numerical evaluation of the integral in (25) may be accomplished by choosing Gaussian
quadrature rules, such that

1∫
0

∂qV dα ≈
Nl∑

l=1

∂qV(q(ξl ))wl , (33)

wherewl andξl are the weights and abscissae for [0, 1]. Recall that the Gauss rule of order
Nl integrates exactly polynomials of degree 2Nl −1. With increasing order of the employed
Gauss rule we expect an associated progressively energy conserving time-stepping scheme.
This expectation is confirmed by our numerical results documented in Section 4.1.3.

4.1.1. Numerical Implementation

Let us consider a typical subintervalIn= [tn−1, tn] with the corresponding master element
on Î = [0, 1]. In the case ofk= 1 there are two nodes located atα= 0 andα= 1. The nodal
values of the generalized displacements and momenta atα= 0, that isq1 andp1, are given
quantities at timetn−1. The nodal unknowns at timetn, that is q2 and p2 in the local
description, may now be calculated by employing the time-stepping algorithm emanating
from (25). Substitution from (25)1 for p2 into (25)2 leads to the residual

R(q2) = 2ml2

hn
[q2− q1] − 2p1+ hn

1∫
0

∂qV dα = 0, (34)

which is a nonlinear function ofq2. The iterative solution by means of Newton’s method
is summarized in Table II. The evaluation of the integrals in Table II may be accomplished
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TABLE II

One-Dimensional Motion: Summary of Computations for One

Typical Time Step in the Casek = 1 Corresponding to Linear Finite

Elements in Time

Given: initial conditions:q1, p1; time step size:hn; set iteration counter:i = 1
Find: nodal unknowsq2 and p2

(a) Compute residual

R
(

q(i )2

)
= 2ml2

hn

[
q(i )2 − q1

]
− 2p1 + hn

1∫
0

∂qV (i ) dα

if
∣∣R(q(i )2

)∣∣ > ε goto (b) else goto (c)

(b) Compute tangent

K
(

q(i )2

)
= 2ml2

hn

+ hn

1∫
0

M2∂
2
qqV (i ) dα

Solve for increment1q2

1q2 = −K−1
(

q(i )2

)
R
(

q(i )2

)
Update generalized displacement

q(i+1)
2 = q(i )2 +1q2

goto (a) withi = i + 1

(c) Update generalized momentum

p(i )2 =
2ml2

hn

[
q(i )2 − q1

]
− p1

Note.Circular pendulum:V =−mglcosq.

by using one of the quadratures discussed above. Accordingly, depending on the particular
quadrature rule, Table II comprises a family of time-stepping schemes associated with the
linear finite element formulation (k= 1).

Remark 4.1. In Table II,ε→ 0 is the numerical tolerance applied in the iterative solution
procedure. In the case of exact quadrature, that is when formula (26) is used, the following
relation can be easily verified:

Hn − Hn−1 = 1

hn
R(q2)[q2− q1].

Accordingly, algorithmic energy conservation is automatically attained when the iterative
solution procedure has converged. This statement is a direct consequence of the general
result (20).

4.1.2. Numerical Accuracy and Quadrature

Next we investigate the accuracy of the time-stepping schemes related to the linear
finite element formulation(k = 1). To this end we consider the error in the generalized
displacements and momenta, respectively, defined as the difference between the reference
and the approximate solutions,

eq(t) = q∗(t)− qh(t)

and

ep(t) = p∗(t)− ph(t). (35)
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FIG. 3. Linear elements (k= 1): Computed mean-square norm of the error in the generalized displacements
for different time-stepping schemes associated with specific quadrature rules.

As reference solutionsq∗(t) andp∗(t)we consider the numerical results obtained with very
small, equally spaced, time steps of sizehn= 0.0001. Within the time intervalI = [0, T ],
with T = 8, we calculate the mean-square norm of the error according to

‖e‖L2(0,T) =


T∫
0

e2 dt


1/2

. (36)

Using exact quadraturein Table II by employing formula (26) we obtain the numerical
results for the error in the generalized displacements depicted in Fig. 3. Additionally, the
results obtained by applying themidpoint quadrature, thetrapezoidal rule, as well as thetwo-
point Gaussian quadratureare also shown in Fig. 3. Accordingly, the rate of convergence
of the investigated time-stepping schemes is two with respect to the mean-square norm.
The specific quadrature rule used has only minor influence on the numerical accuracy of
the related time-stepping scheme. Referring to Fig. 4, the same conclusions can be drawn
concerning the error in the generalized momenta.

4.1.3. Energy Conservation and Quadrature

As has been shown in Section 3.2, exact integration in Table II implies exact algorithmic
conservation of the total energy. In this section we investigate how different quadrature rules
effect the energy conservation property. Specifically we consider the midpoint, trapezoidal,
and Gaussian quadrature rules. Naturally, we expect progressively energy conserving algo-
rithms with increasing accuracy of the used quadrature rules. We measure the error in the
total energy according to

eH =
N∑

n=1

|H∗ − Hn|hn, (37)

wherehn= tn − tn−1 is the time step size,Hn is the calculated total energy at timetn, and
H∗ is the exact value of the constant total energy. As before the time interval of interest is
I = [0, T ], with T = 8, andN denotes the number of (equally spaced) time steps.
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FIG. 4. Linear elements (k= 1): Computed mean-square norm of the error in the generalized momenta for
different time-stepping schemes associated with specific quadrature rules.

Exact quadrature. Our numerical experiments confirm the exact energy preserving
property of the developed algorithm, independent of the time step size, when exact in-
tegration is used by employing formula (26). Our computations rely on a floating point
relative accuracy of 2.22e− 16. Taking into account numerical round-off in the calcula-
tion of (37), we consider the value log [eH ]≈−24 as the numerical limit corresponding to
eH = 0. Accordingly, the results obtained by using exact quadrature are represented by the
horizontal straight line in Fig. 5.

Midpoint and trapezoidal rules.Figure 5 shows that application of the midpoint rule
(see formula (29)) or the trapezoidal rule (see formula (31)) leads to time-stepping schemes
violating energy preservation of the underlying conservative dynamical system. Both quadra-
ture rules yield a straight line of slope 2 in the log-log plot.

FIG. 5. Linear elements (k= 1): Computed error in the total energy for different time-stepping schemes
associated with specific quadrature rules.
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Gaussian quadrature.Using two Gauss points in (33) we obtained a straight line of
slope 4 as shown in the log-log plot in Fig. 5. Already three Gauss points essentially yield
results being indistinguishable from the exact integration. In summary, with increasing order
of the quadrature rule the corresponding time-stepping scheme progressively inherits the
energy conserving property of the underlying conservative system.

4.2. Quadratic Elements

In this section we investigate the casek= 2 corresponding to quadratic trial functions.
Referring to Table I and (24), we obtain the particular finite element formulation given by

−5q1+ 4q2+ q3− hn

ml2
[ p1+ 2p2] = 0

−q1− 4q2+ 5q3− hn

ml2
[2p2+ p3] = 0

(38)

5

6
p1− 2

3
p2− 1

6
p3− hn

1∫
0

M̃1∂qV dα = 0

1

6
p1+ 2

3
p2− 5

6
p3− hn

1∫
0

M̃2∂qV dα = 0,

with ∂qV =mglsinq. Again hn= tn − tn−1, and the generalized displacementq1 as well
as the generalized momentump1 are given quantities at timetn−1. The nodal unknowns
q2, q3, and p2, p3 corresponding to the generalized displacements and momenta at time
tn− 1

2
and tn can be calculated by using the finite element formulation in (38). As in the

casek= 1 treated above, the additional specification of the quadrature employed for the
evaluation of the integrals in (38) completely defines a particular time-stepping scheme.
Here we concentrate onGaussian quadraturefor the computation of the integrals in (38).
In this connection it is interesting to note that using two Gauss points leads to a scheme
which coincides with the two-stage Gauss Runge–Kutta method (see Hulme [16] and the
Appendix).

4.2.1. Numerical Implementation

Using (38)1 and (38)2, p2 and p3 can be eliminated from (38)3 and (38)4, such that we
obtain the residual vector

R(q2,q3) =
 ml2

hn
[q3− q1] − p1+ hn

∫ 1
0 M̃1∂qV dα

ml2

hn
[3q3− 8q2+ 5q1] + p1+ hn

∫ 1
0 M̃2∂qV dα

 , (39)

which is a nonlinear function ofq2 andq3. An outline of the iterative solution procedure
based on Newton’s method is given in Table III. The integrals in Table III may be evaluated
by employing Gaussian quadrature, analogous to (33).

Remark4.2. Analogous to Remark 4.1 the energy conserving property of the algo-
rithm in Table III associated with exact quadrature can be verified by a straightforward
calculation. Scalar multiplication of the residual vectorR=R(q2,q3)= [R1, R2]T with the
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TABLE III

One-Dimensional Motion: Summary of Computations for One

Typical Time Step in the Casek = 2 Corresponding to Quadratic

Finite Elements in Time

Given: initial conditions:q1, p1; time step size:hn; set iteration counter:i = 1

R1 = ml2

hn

[−q1

5q1

]
+
[−p1

p1

]
, K 1 = ml2

hn

[
0 1
−8 3

]
Find: vector of nodal unknowns

q̂ = [q2,q3]T andp̂ = [ p2, p3]T

(a) Compute residual

R(i ) = R1 + K 1q̂(i ) + R(i )
2

where

R(i )
2 =

[
R(i )

1 , R(i )
2

]T
with R(i )

J = hn

1∫
0

M̃ I ∂qV (i ) dα

if |R(i )| > ε goto (b) else goto (c)
(b) Compute tangent

K (i ) = K 1 + K (i )
2

where

K (i )
2 =

[
k(i )11 k(i )12

k(i )21 k(i )22

]
with k(i )I J = hn

1∫
0

M̃ I MJ+1∂
2
qqV (i ) dα

Solve for increments

1q̂ = −K (i )−1
R(i )

Update generalized displacements

q̂(i+1) = q̂(i ) +1q̂

goto (a) withi = i + 1

(c) Update generalized momenta

p(i )2 =
ml2

2hn

[
q(i )3 + 4q(i )2 − 5q1

]
− 1

2
p1

p(i )3 =
ml2

hn

[
4q(i )3 − 8q(i )2 + 4q1

]
+ p1

Note.Circular pendulum:V =−mglcosq.

vector [̃q1, q̃2]T yields

Hn − Hn−1 = 1

hn
R(q2,q3) ·

[
−3q1+ 4q2− q3

q1− 4q2+ 3q3

]
,

which can be regarded as the computational counterpart of the general expression (20) for
the algorithmic conservation of the Hamiltonian.

4.2.2. Numerical Accuracy and Quadrature

In this section we examine the numerical accuracy of the time-stepping algorithms cor-
responding to quadratic finite elements in time(k= 2). In particular, we elaborate on the
influence of the employed (Gaussian) quadrature rule on the numerical accuracy of the
associated time-stepping scheme. As in Section 4.1.2, we calculate the mean-square norm
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FIG. 6. Quadratic elements (k= 1): Computed mean-square norm of the error in the generalized displacements
for specific time-stepping schemes associated with different Gaussian quadrature rules.

of the error in the generalized displacements and momenta (see Eq. (36)). Again the time
interval of interest isI = [0, T ], with T = 8. The reference solution is obtained with linear
elements incorporating exact quadrature and a time step size ofhn= 0.0001.

The calculated results for the mean-square norm of the error in the generalized dis-
placements are depicted in Fig. 6. Accordingly, the application of only one Gauss point
for the evaluation of the integrals in Table III yields an associated time-stepping scheme
with second-order accuracy. Already two Gauss points lead to a third-order accurate time-
stepping scheme. Our numerical calculations show that the application of more than two
Gauss points does not make any difference from the accuracy point of view.

4.2.3. Energy Conservation and Quadrature

In analogy to the casek= 1 in Section 4.1.3 we examine how the employed Gaussian
quadrature influences the algorithmic energy conservation fork= 2. According to (20)
exact quadrature implies exact energy conservation of the associated time-stepping scheme.
Accordingly, with increasing order of the employed Gauss rule we expect a progressively
energy conserving time-stepping algorithm. This feature is verified in view of Fig. 7, where
again the error in the energy according to (37) is shown. Accordingly, already four Gauss
points yield results being almost indistinguishable from exact quadrature.

4.3. Cubic Elements

In this section we investigate the casek= 3 corresponding to cubic trial functions. Refer-
ring to (24) along with the corresponding values forMI (α), M̃ I (α), q̃I , andp̃I , summarized
in Table I, one obtains the finite element formulation fork= 3. Again the selection of a
particular quadrature rule for the evaluation of the integrals containing the potential en-
ergy function completely defines a specific time-stepping scheme. In the present case we
will concentrate on Gaussian quadrature. Interestingly, if three Gauss points are employed
one obtaines a scheme that coincides with the three-stage Gauss Runge–Kutta method (see
Hulme [16] and the Appendix).
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FIG. 7. Quadratic elements (k= 2): Computed error in the total energy for different time-stepping schemes
associated with specific quadrature rules.

4.3.1. Numerical Implementation

Within each consecutive subintervalIn= [tn−1, tn] one has to solve for the nodal un-
knownsq̂ = [q2,q3,q4] and p̂= [ p2, p3, p4], while q1 and p1 are given quantities at time
tn−1. As before this task can be accomplished by eliminatingp̂ in order to obtain three
nonlinear equations to be solved forq̂. The iterative solution procedure relies on Newton’s
method and makes use of the residual vector given by

R(q̂) =


ml2

hn

[− 5
2q1+ 3

2q2+ 3
2q3− 1

2q4
]− p1+ hn

∫ 1
0 M̃1∂qV dα

ml2

hn
[3q1− 3q2− 3q3+ 3q4] + hn

∫ 1
0 M̃2∂qV dα

ml2

hn
[−7q1+ 15q2− 12q3+ 4q4] − p1+ hn

∫ 1
0 M̃3∂qV dα

 . (40)

An outline of the iterative solution procedure for one typical time step is given in Table IV.
The integrals in Table IV may be evaluated by employing Gaussian quadrature, analogous
to (33).

4.3.2. Numerical Accuracy and Quadrature

In this section we examine the numerical accuracy of the time-stepping algorithms corre-
sponding to cubic finite elements in time (k= 3). In particular, we elaborate on the influence
of the employed (Gaussian) quadrature rule on the numerical accuracy of the associated
time-stepping scheme. As in Section 4.1.2, we calculate the mean-square norm of the error
in the generalized displacements and momenta (see Eq. (36)). Again the time interval of
interest isI = [0, T ], with T = 8. The reference solution is obtained with linear elements
incorporating exact quadrature and a time step size ofhn= 0.0001.

The calculated results for the mean-square norm of the error in the generalized displace-
ments are depicted in Fig. 8. Thus using only one Gauss point is not adequate for the
cubic element since only second-order accuracy is attained. In contrast to that, the rate of
convergence of the time-stepping scheme associated with two Gauss points is already four
with respect to the mean-square norm. The application of three Gauss points improves the
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TABLE IV

One-Dimensional Motion: Summary of Computations for One

Typical Time Step in the Casek = 3 Corresponding to Cubic Finite

Elements in Time

Given: initial conditions:q1, p1; time step size:hn set iteration counter:i = 1

R1 = ml2

hn

− 5
2
q1

3q1

−7q1

+ [−p1

0
−p1

]
, K 1 = ml2

hn

[
3
2

3
2
− 1

2

−3 −3 3
15 −12 4

]
Find: vector of nodal unknowns

q̂ = [q2,q3,q4]T andp̂ = [ p2, p3, p4]T

(a) Compute residual

R(i ) = R1 + K 1q̂(i ) + R(i )
2

where

R(i )
2 =

[
R(i )

1 , R(i )
2 , R(i )

3

]T
with R(i )

I = hn

1∫
0

M̃ I ∂qV (i ) dα

if |R(i )| > ε goto (b) else goto (c)

(b) Compute tangent

K (i ) = K 1 + K (i )
2

where

K (i )
2 =

 k(i )11 k(i )12 k(i )13

k(i )21 k(i )22 k(i )23

k(i )31 k(i )32 k(i )33

 with k(i )I J = hn

1∫
0

M̃ I MJ+1∂
2
qqV (i ) dα

Solve for increments

1q̂ = −K (i )−1
R(i )

Update generalized displacements

q̂(i+1) = q̂(i ) +1q̂

goto (a) withi = i + 1

(c) Update generalized momenta

p(i )2 =
ml2

hn

[
−175

54
q1 + 13

6
q(i )2 +

7

6
q(i )3 −

5

54
q(i )4

]
− 11

27
p1

p(i )3 =
ml2

hn

[
74

27
q1 − 20

3
q(i )2 +

10

3
q(i )3 +

16

27
q(i )4

]
+ 11

27
p1

p(i )4 =
ml2

hn

[
−13

2
q1 + 27

2
q(i )2 −

27

2
q(i )3 +

13

2
q(i )4

]
− p1

Note.Circular pendulum:V =−mglcosq.

accuracy slightly while retaining fourth-order accuracy. Increasing the order of the numer-
ical quadrature by employing more than three Gauss points apparently does not improve
the accuracy anymore.

4.3.3. Energy Conservation and Quadrature

In analogy to the casek= 1 in Section 4.1.3 we examine how the employed Gaus-
sian quadrature influences the algorithmic energy conservation fork= 3. Referring to (20)
exact quadrature implies exact energy conservation of the associated time-stepping scheme.



INHERENTLY ENERGY CONSERVING TIME FINITE ELEMENTS 107

FIG. 8. Cubic elements (k= 3): Computed mean-square norm of the error in the generalized displacements
for specific time-stepping schemes associated with different Gaussian quadrature rules.

Accordingly, with increasing order of the employed Gauss rule we expect a progressively
energy conserving time-stepping algorithm. This feature is verified in view of Fig. 9, where
again the error in the energy according to (37) is shown. Accordingly, already five Gauss
points yield results being almost indistinguishable from exact quadrature.

5. SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

Next, we discuss computational aspects related to the general case of conservative dy-
namical systems with several degrees of freedom. The corresponding numerical simulations
deal with a planar double pendulum. The general time finite element method in (15) can be

FIG. 9. Cubic elements (k= 3): Computed error in the total energy for different time-stepping schemes
associated with specific quadrature rules.
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recast in the form

k∑
J=1

1∫
0

M̃ I M̃J dα z̃J − hnJ

1∫
0

M̃ I∇H(z) dα = 0, (41)

for I = 1, . . . , k. Here, use has been made of the matrices

z=
[

q
p

]
and

J =
[

0 I
−I 0

]
, (42)

where0 andI are thendof× ndof zero and identity matrices. Recall that the finite element
interpolations in (10) imply the expression

z(α) =
k+1∑
I=1

MI (α)zI . (43)

In general, exact calculation of the time integrals
∫ 1

0 M̃ I∇H(z) dα is not possible. On the
other hand, referring to the treatment of algorithmic conservation properties in Section 3.2,
in the autonomous case, algorithmic energy conservation is associated with the fulfillment
of the relation

H(z(1))− H(z(0)) =
k∑

I=1

1∫
0

M̃ I∇H(z) dα · z̃I . (44)

Application of standard quadrature formulas of the form

1∫
0

M̃ I∇H(z) dα ≈
Nl∑

l=1

M̃ I (ξl )∇H(z(ξl ))wl (45)

will in general compromise the fulfillment of (44). The natural way to enforce algorithmic
energy conservation is to increase the order of the integration rule. However, this can
be prohibitively expensive. Alternatively, one can try to design reasonable nonstandard
quadrature formulas which exactly fulfill Eq. (44) and thus lead to exactly energy conserving
time-stepping schemes.

5.1. Nonstandard Quadrature Formula

The above-mentioned design of nonstandard quadrature rules is demonstrated next for
k= 1, i.e., linear time finite elements. In this case Eq. (44) takes the form

H(z(1))− H(z(0)) =
1∫

0

∇H(z) dα · z̃, (46)

with z̃= z(1)− z(0). Now consider the nonstandard quadrature formula

1∫
0

∇H(z) dα ≈ ∇H(z(1/2))+ H(z(1))− H(z(0))−∇H(z(1/2)) · z̃
‖z̃‖2 z̃. (47)
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It can be easily verified that the energy conservation condition (46) is fulfilled by applying
formula (47). Hence the associated time-stepping scheme exactly conserves total energy.
The specific form of (47) is in accordance with the discrete gradient method of Gonzalez
[10]. There it has been shown that the discrete gradient appearing on the right-hand side
of (47) is a second-order approximation to the exact gradient at the mid-pointz(1/2).
Accordingly, (47) can be interpreted as perturbation of the standard mid-point rule.

Indeed, our numerical investigations in the next section confirm that the time-stepping
scheme resulting from the application of the nonstandard rule (47) retains the accuracy
of the mid-point rule. In addition to that, exact algorithmic energy conservation has been
observed.

5.2. Double Pendulum

The numerical example considered next deals with the planar double pendulum depicted
in Fig. 10. The potential energy function can be written in the form

V(q) = −Mgl[2 cosq1+ cosq2], (48)

and the kinetic energy is given by

T(q, q̇) = 1

2
q̇ ·M(q)q̇, (49)

with the generalized inertia matrix

M(q) = Ml 2

[
2 cos(q1− q2)

cos(q1− q2) 1

]
. (50)

Accordingly, the generalized momentum isp= ∂q̇T =M(q)q̇, and the Hamiltonian function

takes the form

H(q, p) = V(q)+ 1

2
p ·M(q)−1p. (51)

The implementation of the cg(1) method for the double pendulum at hand is summarized
in Table V.

FIG. 10. Double pendulum.
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TABLE V

Planar Double Pendulum: Summary of Compu-

tations for One Typical Time Step in the Casek = 1

Corresponding to Linear Time Finite Elements

Given: initial conditions:z1 =
[

q1

p1

]
time step size:hn

set iteration counter:i = 1

J =
[

0 I
−I 0

]
I =
[

I 0
−0 I

]
Find: nodal unknownsz2 =

[
q2

p2

]
(a) Compute residual

R(i ) = z(i )2 − z1 − hnJ

1∫
0

∇H(z(i )) dα

if ‖R(i )‖ > ε goto (b)
(b) Compute tangent

K (i ) = I− hnJ

1∫
0

M2∇2H(z(i )) dα

Update

z(i+1)
2 = z(i )2 − K (i )−1

R(i )

goto (a) withi = i + 1

In the numerical example the parametersM = 1, l = 1, andg= 9.81 have been chosen.
The initial conditions are

q0 =
[
π/2
π/2

]
and

p0 =
[

0
0

]
. (52)

The results obtained with a time step size ofhn= 0.0001 serve as reference solution, denoted
asz∗(t). Figures 11 and 12 contain a sequence of deformed configurations for 0≤ t ≤ 1.51
and 12.26≤ t ≤ 13.66, respectively.

Figure 13 shows the computed error in the generalized displacements and momenta for
linear time finite elements (k= 1). We calculated the norm of the error inz according to

‖ez‖ =


T∫
0

ez ·Mez dt


1/2

, (53)

with ez(t)= z(t)− z∗(t), scaling matrixM which has been set toM= I, the 2ndof× 2ndof

identity matrix, andT = 1.5. It can be seen that the nonstandard quadrature formula,
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FIG. 11. Double pendulum: Sequence of deformed configurations for 0≤ t ≤ 1.51.

Eq. (47), (“modified quadrature” in Fig. 13), yields the same order of accuracy as the mid-
point rule. In this connection, using more than one Gauss point essentially yields the same
results.

Figure 14 illustrates the enforcement of algorithmic energy conservation by increasing
the order of the integration rule (forhn= 0.05 andk= 1). Accordingly, applying 3 Gauss
points prevents the blowup behavior exhibited by the mid-point rule (1 Gauss point), at least
within the considered time interval 0≤ t ≤ 15. Figure 14 can be interpreted as numerical
verification of the inherent energy conservation property of the time finite element method
under consideration.

Eventually, Fig. 15 shows the evolution of they component of the position vector ac-
cording toy1=−l cosq1.

FIG. 12. Double pendulum: Sequence of deformed configurations for 12.26≤ t ≤ 13.66.



FIG. 13. Double pendulum: Computed norm of the error inz for linear time finite elements(k= 1).

FIG. 14. Double pendulum: Increasing the number of Gauss points illustrates the inherent energy conservation
property of the time finite element method under consideration (hn= 0.05).

FIG. 15. Double pendulum: Component of position vector given byy1= − l cosq1.

112
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6. CONCLUSIONS

We have derived a new family of time-stepping schemes for classical mechanics based
upon the Petrov–Galerkin finite element approximation of Hamilton’s canonical equations.
Provided that a specific Hamiltonian function is given, the general time finite element
formulation (15) can be used to generate particular time-stepping schemes. To this end,
essentially two steps have to be performed:

1. The selection of the polynomial degreek of the Lagrangean shape functions specifies
the corresponding finite element formulation.

2. A particular time-stepping scheme is finally obtained by the selection of the quadrature
formula employed for the evaluation of the time integrals.

We saw that the time finite element method under consideration is inherently energy
conserving. In the case of linear elements (i.e.,k= 1) and one-dimensional motion the time
integrals can be exactly calculated, thus leading to a time-stepping scheme which exactly
conserves the total energy. Interestingly, this scheme has been shown to be identical with
the difference method due to Greenspan [12].

In more general circumstances exact integration is rarely feasible. Therefore, we inves-
tigated how the application of standard quadrature rules affects the energy conservation
property. Our numerical experiments related tok= 1, 2, 3 confirmed that algorithmic en-
ergy conservation can be simply achieved by increasing the order of the quadrature rule. On
the other hand, in the general case of several degrees of freedom andk= 1 we have shown
that exact algorithmic energy conservation can be maintained by applying a nonstandard
quadrature formula. The design of this formula has been shown to be closely connected
with the discrete gradient method proposed by Gonzalez [10]. In this respect it would be
desirable to generalize the construction of nonstandard quadrature formulas fork> 1.

Despite the simplicity of the investigated model problem the system structure of the cir-
cular pendulum is similar to more involved problems such asN-body problems of classical
mechanics or nonlinear elastodynamics in semidiscrete form. Accordingly, the time finite
element approach advocated herein can be directly extended to dynamical systems where
in many applications the algorithmic conservation of energy and angular momentum turns
out to be especially important (see [4] and [5]).

APPENDIX: RELATION WITH GAUSS RUNGE–KUTTA METHODS

In this appendix we verify the connection of the proposed time finite element formulations
with Gauss Runge–Kutta methods. According to Section 5, application of the time finite
element method to the discretization ofż= f(z), with f(z)= J∇H(z), yields

k+1∑
J=1

1∫
0

M̃ I (α)M
′
J(α) dα zJ − hn

1∫
0

M̃ I (α)f(z(α)) dα = 0, (A.1)

for I = 1, . . . , k. Employingk-point Gaussian quadrature formulas the integrals in (A.1)
are replaced by expressions of the form

k∑
l=1

M̃ I (ξl )f(z(ξl ))wl , (A.2)
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where theξl s denote the location of the quadrature points and thewl s are the associ-
ated weights. Then, taking into account (43), i.e.,z(α)= ∑k+1

I=1 MI (α)zI and the identity∑k
I=1 M̃ I = 1, the system of equations in (A.1) can be recast in the form

z(ξi ) = z1+ hn

k∑
j=1

ai j f(z(ξ j )), i = 1, . . . , k

(A.3)

zk+1 = z1+ hn

k∑
i=1

wi f(z(ξi )),

which corresponds to ak-stage Runge–Kutta method (see, e.g., Stuart and Humphries [22]).
The coefficientsai j in (A.3) are determined by the finite element formulation. For instance,
in the case of quadratic time finite elements (k= 2) dealt with in Section 4.2, the general
method in (A.1) leads to

−5z1+ 4z2+ z3− 6hn

1∫
0

M̃1(α)f(z(α)) dα = 0

(A.4)

−z1− 4z2+ 5z3− 6hn

1∫
0

M̃2(α)f(z(α)) dα = 0.

A straightforward calculation yields

ai j = w j

4
[M2(ξi ){5M̃1(ξ j )− M̃2(ξ j )} + 4M3(ξi )]. (A.5)

Introducing the locationsξ1= [1− 1/
√

3]/2 andξ2= [1+ 1/
√

3]/2 of the quadrature points
and valuesw1=w2= 1/2 of associated weights we obtain the coefficient matrix

[ai j ] =
 1

4
1
4 −

√
3

6

1
4 +

√
3

6
1
4

 . (A.6)

Accordingly, the coefficientsξi , ai j , andwi give rise to the Butcher tableau of the two-stage
Gauss Runge–Kutta method (see, e.g., Hairer and Wanner [13]).

In the case of cubic time finite elements (k = 3) treated in section 4.3, the general method
in (A.1) yields

−83z1+ 99z2− 9z3− 7z4− 120hn

1∫
0

M̃1(α)f(z(α)) dα = 0

−11z1− 27z2+ 27z3+ 11z4− 30hn

1∫
0

M̃2(α)f(z(α)) dα = 0 (A.7)

7z1+ 9z2− 99z3+ 83z4− 120hn

1∫
0

M̃3(α)f(z(α)) dα = 0.
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Proceeding as before, a straightforward calculation renders the relation

ai j = w j

27
[M2(ξi ){37M̃1(ξ j )+ 4M̃2(ξ j )+ M̃3(ξ j )} + M3(ξi ){26M̃1(ξ j )

+ 23M̃2(ξ j )− 10M̃3(ξ j )} + 27M4(ξi )]. (A.8)

Substitution of the abscissae and associated weights,

ξ1 = 1

2

[
1−

√
3

5

]
w1 = 5

18

ξ2 = 1

2
w2 = 4

9
(A.9)

ξ3 = 1

2

[
1+

√
3

5

]
w3 = 5

18
,

corresponding to the Gaussian quadrature rule fork= 3, yields the coefficient matrix

[ai j ] =


5
36

2
9 −

√
15

15
5
36 −

√
15

30

5
36 +

√
15

24
2
9

5
36 −

√
15

24

5
36 +

√
15

30
2
9 +

√
15

15
5
36

 . (A.10)

In summary, the coefficientsξi ,ai j , andwi are the elements of the Butcher tableau associated
with the three-stage Gauss Runge–Kutta method (see, e.g., Hairer and Wanner [13]).
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