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In this paper, we develop a finite element method for the temporal discretiza-
tion of the equations of motion. The continuous Galerkin method is based upon
a weighted-residual statement of Hamilton’s canonical equations. We show that the
proposed finite element formulation is energy conserving in a natural sense. A family
of implicit one-step algorithms is generated by specifying the polynomial approxi-
mation in conjunction with the quadrature formula used for the evaluation of time
integrals. The numerical implementation of linear, quadratic, and cubic time finite
elements is treated in detail for the model problem of a circular pendulum. In ad-
dition to that, concerning dynamical systems with several degrees of freedom, we
address the design of nonstandard quadrature rules which retain the energy conser-
vation property. Our numerical investigations assess the effect of numerical quadra-
ture in time on the accuracy and energy conservation property of the time-stepping
schemes. (© 2000 Academic Press

Key Words:Petrov—Galerkin method; finite element method; initial value prob-
lems; classical mechanics; Hamilton’s equations.

1. INTRODUCTION

In this paper we develop a finite element formulation for the temporal discretization
the equations of motion. We restrict ourselves to holonomic dynamical systems formul
in terms of independent generalized coordinates. The newly developed time finite eler
formulation is based upon the temporal discretization of Hamilon’s canonical equations
means of the continuous Galerkin (cG) method.

Following the terminology of Erikssoet al.[7] the term “cG(k) method” refers to trial
functions consisting of continuous piecewise polynomials of degraed test functions
consisting of discontinuous piecewise polynomials of dedgre€l. The cG method has
apparently been introduced by Hulme [16] for the numerical solution of systems of fir
order ordinary differential equations.
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We show that the cG method in conjunction with Hamilton’s equations is inherently ¢
ergy conserving. Thatis, provided that the time integrals appearing in the time finite elen
formulation are calculated exactly, the resulting time-stepping scheme is exactly en
conserving. Of course, exact calculation of the time integrals is rarely feasible. Theref
we investigate the effect of standard quadrature rules on algorithmic energy conserva
Moreover, we show that it is possible to maintain exact algorithmic energy conservatior
the design of nonstandard quadrature formulas. Concerning the application of quadr:
rules it is interesting to note that the cG(k) method yields time-stepping schemes that
incide withk-stage Gauss Runge—Kutta methods-gfoint Gaussian quadrature formulas
are used. This was already shown in Hulme [16].

Nonlinear elastodynamics is but one field where algorithmic energy conservation app
to be a desirable property of time-stepping schemes, especially from the viewpoin
numerical stability (see, e.g., Hughes [14] and Gonzalez and Simo [11]). In this con
Simo and Tarnow [20] and Crisfield and Shi [6] have shown that the lack of algorithn
energy conservation can lead to dramatic blowup behavior. As aremedy they render the
point rule energy preserving by employing a modified stress calculation. Another apprc
relies on the application of Lagrange multipliers for the algorithmic enforcement of t
energy constraint (see, e.g., Hugle¢sl.[15] or Kuhl and Ramm [17]). Alternatively, the
energy constraint equation may be used to solve for an additional scalar variable w
is introduced into the time-stepping algorithm in order to fulfill energy conservation (s
e.g., LaBudde and Greenspan [18] and Sehal. [21]). Furthermore, the application of
“discrete gradient” methods to Hamiltonian systems yields energy conserving time-step
schemes (see Gonzalez [10] and McLacldaal.[19] and references therein).

The variational formulation used herein can be related to Hamilton’s law of varying :
tion as well as Hamilton’s principle (see Remark 3.1 below), which have previously be
the starting point for the development of alternative time-stepping schemes. For exan
Hamilton’s principle in conjunction with the Ritz method can be employed for the tempo
discretization of dynamical systems with specified end-point conditions (see, e.g., Gill
and Wilson [8] or the early work of Argyris and Scharpf [1]). Another approach relies
the introduction of a discrete variational principle which can be used to obtain the ass
ated discrete Euler-Lagrange equations (see Wendlandt and Marsden [23] and refer
therein). Hamilton’s law of varying action is the starting point of the discretization meth
advocated by Bailey [3], where global polynomial approximations of the displacements
applied.

An outline of the remainder of the paper is as follows. In section 2 we give a brief su
mary of the Hamiltonian formulation of the equations of motion needed for the subseqt
developments. Section 3 contains the temporal discretization of Hamilton’s equation:
means of the continuous Galerkin method. Making use of the subparametric finite eler
concept along with Lagrangean shape functions we arrive at the general finite eler
formulation. In addition to that, the algorithmic conservation properties are investigat
namely (i) conservation of total energy and (ii) conservation of generalized momenta cc
sponding to cyclic coordinates. Section 4 is devoted to computational aspects in the r
of one-dimensional motion. In particular, we give a detailed account of the numerical
plementation of the method relatedde- 1, 2, 3. In this connection, numerical simulations
are given to examine algorithmic energy conservation as well as the error in the genera
displacements/momenta. Computational aspects pertaining to systems with several de
of freedom are addressed in Section 5. The corresponding numerical example deals v
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planar double pendulum. Conclusions are drawn in Section 6. The connection with 0
applied Gauss Runge—Kutta methods is verified in the Appendix.

2. HAMILTONIAN FORMULATION OF THE EQUATIONS OF MOTION

We summarize below some results of classical mechanics which will be needed for
subsequent development of the time-stepping algorithms. In particular, we concentrat
the Hamiltonian formulation of the equations of motion which are the starting point f
the Galerkin approximations developed below. We refer to the books of Goldstein [9]
Arnold [2] for a more detailed account of the subject.

Let us consider a holonomic dynamical system wigh degrees of freedom whose con-
figurationis expressed interms of independent generalized coordipatesl, 2, . . ., Ngof.
Eachg may be considered to be a component of a generalized displacementyéttor
a ngo-dimensional configuration space. Furthermore, we assume that all the general
forces Q; are associated with a conservative force fi@le= —d4V, where the potential
energyV (q, t) is a function ofg and timet. Let T(q, g, t), with =dq/dt, be the total
kinetic energy of the system and=T — V the Lagrangian function. Then the standarc
form of Lagrange’s equations may be written as

d
g (Pal) — gL =0. (1)

In general the application of Lagrange’s equations yields a set of nonlinear differen
equations of the forng + f(q, g, t) =0, that is,ngo; SeCcOnd-ordeequations of motion. In
view of our numerical developments we prefer the Hamiltonian formulation of the dynami
system in terms of 12 first-orderequations. The Hamiltonian function is defined by

H@,p,t) =p-q—L(q,q,1), (2

in whichq is implicitly expressed in terms of the generalized momentum v@aocording
to the relatiorp = 94 L. The system of Lagrange’s equations (1) is equivalent to the canoni
equations of Hamilton given by

. 3)

Accordingly, the motion is described by means ofg first-order equations of motion
expressed in terms 0ihg,s independentariables €(t), p(t)), which are the coordinates
of phase space.

In the present context we are especially interested in (scleronomic) natural syst
where the kinetic energy is expressed as a homogeneous quadratic functiosf that
is, T= %p -M~1p, whereM (q) is the generalized inertia matrix. For natural systems th
Hamiltonian function is equal to the total energy; that is,

H=T+V. (4)

Hamilton’s equations (3) imply thafl = ;H such that for an autonomous natural system
where the Hamiltonian function does not depend explicitly on tigel & 0), the total
energy is a constant of the motion.
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3. PETROV-GALERKIN FINITE ELEMENT FORMULATION

In view of a Galerkin approximation of Hamilton’s canonical equations (3) we form tt
weighted-residual statement for each equation in (3). Leingndsq be test functions
sufficiently smooth on the time interval of interdst [to, to + T], we have

to+T

[ 1=k 5p— (b +gH) - salt 0. )

to

Note that (5) leads to theng,; canonical equations since batp andéq are arbitrary.
Equation (5) lies at the heart of the finite element method developed in the sequel.

Remark 3.1. Equation (5) can be related to Hamilton’s law of varying action. To thi
end, integrate the terdy - p by parts, which yields

to+T

5 / [p-d— H(p.q.0]dt — [p-sq]oT = ®)

to

Here, the operatos is to be interpreted as contemporaneous variation, suchs that
dpH -8p + dqH - 8q. Alternatively, in the Lagrangian formulation, (6) can be written as

to+T
5 [ Laand-paL sayT =o @)

o

This equation is often called Hamilton’s law of varying action (see, e.g., Williams [2
Appendix E). If one imposes the stationarity condition of vanistiiggt the endpointt,
andty+ T, (6) coincides with the modified Hamilton’s principle (see, e.g., Goldstein [€
Chapter 8-5), and (7) coincides with Hamilton’s principle.

3.1. Outline of the Time-Stepping Schemes

Consider a partition of the time interval of interést [to, to + T] into a number of finite
elements of (time step) sitg =t, —ty_1,suchthaty <t; <to <--- <ty =to+ T and

to+T

/[ Jdt = Z/[ (®)

n= 1tn1

On each subintervd} =[t,_1, tn], we consider piecewise smooth polynomial approxima
tions of the trial functiong)(t) andp(t), continuous across the element boundaries. In pe
ticular, we concentrate on the Lagrange family of finite elements consisting of polynom
of degreek. In addition to that, we employ piecewise smooth polynomial approximatio
of degreek — 1 for the test functiongq(t) andsp(t), discontinuous across the elemen
boundaries.

In the following we consider a representative finite element ,pwith k + 1 nodes.
For convenience of subsequent element calculations, we introduce a transformation
master element using a local coordinatewith its origin at the left endpoint angd=1 at
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FIG. 1. Partition of the time interval =[t,, to + T] into N finite elements on the subintervdls=[t,_1, t,]
and master elememtwith k + 1 nodes.

the right endpoint, as shown in Fig. 1. ltet I, = [t,_1, ty] transform toa € f:[O, 1],
according to

t—th1
at) = ————; 9
0=t ©

see also Fig. 1. Thus, fora + 1)-node element the domains of the global and local descri
tions are related by the transformatiort,_1, t,] = [o1, aky1], suchthate(t,_1) =y and

a(ty) = oK1
The trial functions may now be approximated by continuous piecewise polynomials
degreek, according to

k+1

q"(@) =>_ Mi(@a
=1

and

k+1

p@) =) Mi(@p, (10)
=1

whereM; (@) are nodal shape functions corresponding to Lagrange polynomials of deg
k on the master elemeiht given by

k+1

M@= —> 1=l<k+l (11)
3.1 | J
I

Since M, (ex) =8k, the Kronecker delta, the coefficients in (10) are the nodal valu
d; =q(;) andp, =p(a,) of the generalized displacements and momenta, respective
Note that the resulting global approximation of the trial functions remains CO continuol

Similarly, the test function&g(«) andsp(«) are approximated by piecewise polynomials
of reduced degrele— 1, according to

k
50" () =)~ M (a)8q,
1=1
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and
k ~
5p"(@) = > M (@)spi, (12)
=1

whereM («) are reduced shape functions consisting of polynomials of dégrek Note
that the finite element approximation of the test functions leads to possible discontinu
across the element boundaries; i.e., at tijehere may exist jumpssf'] and [sp"],
where [[e} ] = lim._ o+ [{e}(t, + &) — {8} (tn — &)]. From now on we omit the superscript
h without danger of confusion. We may write

k+1

k
q@) =Y M@aq =Y M (). (13)
1=1 1=1

where{e} =d{e}/da and{, are linear combinations of thg s. We refer to Table | for
examples involving nodal shape functiolk (o) of polynomial degree ¥ k < 3, along
with corresponding shape functiom8, («) and the relatedj;s as combinations of the
nodal values, . Analogous to (13), we may write

k+1

K
P = M@p =Y M (@, (14)
=1 =

where again thp, s are linear combinations of the nodal valpgsanalogous to the relations
between théj, s and they, s given in Table I.

Due to the fact that the resulting global approximation of the test functions allows
terelement discontinuities we obtain a recursive time-stepping scheme. Since the g
approximation of the trial functions is continuous, the formulation belongs to a Petrc
Galerkin method where the trial and test spaces are different.

Next we introduce the finite element approximations (10) and (12) into the weak fo
(5) of Hamilton’s equations. With regard to the arbitrariness ofsthes andsp, s on each

TABLE |
Nodal Shape FunctionaM, («) for Polynomial Approximations of Degreesk=1,k=2,
and k = 3 along with Shape Functionavi, (o) and Associated Values g

M (o) M (@) G (p analogously)
k=1 My=1-« M, =1 G=0:—
M, =«
k=2 M = [2a — 1]l — 1] Mi=1-a 01 = —301 +4d2 — 03
M, = —4[a? — o] M, =a G2 = g1 — 492 + 303
M; = [2a — 1]a
k=3  Mi=—Jle—ille—Slle—1] Mi=[2«—1-1 G =—40+9 — 36+ 0
M, = o - ]la — Lo Mz = —4[o? — o] O =3 — Za+ Fas — ;a4
Mz = —Z[a — {][« — 1] Ms = 20 — 1]o s = —Oi+ 302 — 90s + L'

Ms = Sl — 3lle — Sl
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subintervall,,, we obtain the following system of equations,

K 1
> [ ckrs o [ Wi3pH cee = 0
=1 0
. (15)
|\7|||\7|Jda[~)3—hn/|\7||3qu0l=0,
0

>

o\»—\ O\H

forl =1, ..., k. Depending on the chosen polynomial dedceéthe finite element approx-

imation, the equations in (15) furnish distinct recurrence formulas for the calculation of
nodal variables), andp;, for1 =2, ..., k+ 1. Moreover, on each successive time interva
In =[tn_1, ta], the nodal quantities at timg_1, i.e., 1 = q(a(th—1)) andpi = p(a(th-1)),
are given due to the global continuity of the trial functions.

3.2. Algorithmic Conservation Properties

Next we show that the time finite element formulation developed above inherently ¢
serves the Hamiltonian function in the case of autonomous systems. In addition to

we show that the resulting time-stepping schemes automatically preserve the geners
momenta corresponding to cyclic coordinates.

Conservation of the Hamiltonian.Scalar multiplication of (15)and (15) with p, and
4, respectively, and subsequent summation yields

k 1 k 1
Z/M B -8y =Y [ WidpH doc-y =0
J:O I:lo
(16)
k 1 k 1
—Z/M.deaﬁj~q|—hn2/ dqH dor -G = 0.
I,J:lo I:lo

Addition of (16), and (16) leads to

K 1 1
Z[/M.aqua.q.+/|\7|.apHda-f>.]=o. (17)
=1

0 0
Referring to (13) and (14), (17) may also be written in the form

/[BqH -q'() + 9pH - p'(@)]da = 0. (18)

On the other hand, the Fundamental Theorem of Calculus implies

1
Ho — Ho_1 = H(a(@). p(@), @)[* 0=” H(@(@), p@), o) | d
0

= /[BqH -0 (@) + 9pH - p'(@) + 9, H] dev. (29)
0
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Thus (18) leads to
ty
Hy=H1+ /8tH dt. (20)

tn—1

Accordingly, in the autonomous case, whete= H(qg, p) and thereforé;H =0, the algo-
rithmic phase flow generated by (15) preserves the Hamiltonian function in the sense
H, = Hn_1. That is, for any polynomial degrdeof the finite element approximation, the
Hamiltonian is conserved at the end of each successive time intgredt,_1, tp].

Cyclic coordinates. To see what happens if cyclic coordinates appear, considef, (1-
which, after summation ovdr=1, ..., k, yields

1 k 1«
/ |ZI\7IJf)Jda+hn/ZM|8qua=0. (21)
0 o =1

=1 J=1

Since the Lagrangean shape functions fulfill the reIaE‘,h=l M, =1 and, in view of (14),
p'(@)= Y¥_, M (@), Eq. (21) leads to

1
pay—mm=—m¢/%Hdw (22)
0

Hence, ifq is a cyclic coordinate, i.eqH/aqg =0, then it follows from (22) that the
generalized momenturp; associated withy; is conserved by the algorithm in the sense

that pi («(th)) = pi (@ (th-1)).

4. ONE-DIMENSIONAL MODEL PROBLEM

In this section we apply the general method developed above to the case of
dimensional mation. In particular, we give a detailed account of the numerical implem
tation of the time-stepping algorithms emanating from the formulas in (15) for polynom
degreesk=1, k=2, andk=3. We focus our numerical experiments on the accurac
and energy conserving property of the time-stepping schemes. In this context the spe
quadrature rules employed play an important role.

Circular pendulum. We consider the motion of a particle of masssuspended by a
massless rod of lengti{see Fig. 2). In particular, we investigate the oscillatory motion wit
initial conditionsq = /2 andp = 0. The kinetic energy of the particle Ts= %mlzq2 and
the potential energy may be written\s= —mgl cosq, such that the Lagrangian function is
L(,9) = mI2 2 + mglcosg. Lagrange’s equation furnishes the equation of motion in tt
formq+g/| sing = 0. Furthermore, we obtaip= 4L = ml?q, such that the Hamiltonian
function, being equal to the total energy, takes the form

2

omiE mglcosq. (23)

H@, p)=T(p) + V(Q) =

Now the expressiond;H = 3,V andd,H = p/[mI?], can be inserted into the formulas of
the temporal finite element method in (15). Referring to (10), we Ipgivg = Zk“ M (@)
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FIG. 2. Circular pendulum and phase curve corresponding to initial conditeas /2 andp=0.
pi, such that (15) may be written in the form
k 1 b Kt 1
~ o~ N n ~ o~
Z/M|M3dan—WZ/M|MJda p; =0
J=1 0 J=1 0
(24)
k 1 1
Z/MM\]Jd(X PJ +hn/ M|3quOl =
J=19 0
forl =1,..., kandwithdyV = mglsing. The equationsin (24) constitute the foundation o

a family of implicit one-step methods. Essentially two additional steps have to be perforr
in order to obtain a particular time-stepping scheme.

1. The selection of the polynomial degrikedeads to the corresponding finite element
formulation. Concerning the integrals in (24) involving only the shape functidnsind
M, exact integration can be readily performed.

2. Eventually, a specific time-stepping algorithm is completely defined by the evaluat
of fol M 9qV de in (24). In what follows we shall investigate the influencenoimerical
guadratureon the accuracy and energy conserving property of the related algorithm. T
point is of crucial interest especially with regard to dynamical systems with more than «
degree of freedom where exact integration is rarely feasible.

4.1. Linear Elements

First we consider the cade=1 corresponding to linear trial functions. Referring to
Table | and (24), we obtain the particular finite element formulation given by

h
G — G — Wnp[p” p2] =0
(25)

1
0

with 343V =mglsing. Recall that, according to the notation introduced above, the noc
guantities ¢, p1) are associated with timg_; and @, p2) are associated with timig;
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furthermore,h, =t, —t,_1. The time-stepping algorithm is completely specified by th
quadrature employed for the evaluation of the integral in (25).

Exact quadrature. The exact calculation of the integral in (25) does not pose any dif
culties in the present one-dimensional context. In fact, the following identity holds,
1

Vo — Vg
3V dor = , 26
/q o — 01 (26)

0

whereV; =V (01), the potential energy at timg 1. AnalogouslyV, =V (), the potential
energy at time,,. The validity of (26) follows from the Fundamental Theorem of Calculus
which implies
1
a=1 d
Vo — Vi =V(@@)|,_, = / [aV(Q(a))} dor
0
1 1

= / 3qV q () dox =/3qV da[dz — qu]. (27)
0 0

where the relation)’ (o) = g2 — g; has been used, which holds in the present &asd.
Accordingly, the time-stepping scheme in (25) may now be written alternatively as

hn
QZ—Q1—W[p1+ p2] =0
VY (28)
p 4+ h 2T 1_p
P2 P1 nCIZ—Ch

which reveals a surprising result: The time-stepping scheme in (28) coincides with
method of Greenspan [12] (cf. Egs. (3.5) and (3.6) in [12]). Greenspan’s method covers
servative one-dimensional initial-value problems of the f@ra f (q), with f = —dV /dq,
and relies on a difference method which, by design, is energy conserving.

In the present case the energy conserving property of the algorithm (28) follows dire
from (20).

Numerical quadrature. In analogy to the spatial finite element method we next inve:
tigate the approximation of the integral in (25) by means of different quadrature rules
this context the main question is how the accuracy and the conservation properties o
respective time-stepping method will be affected by the quadrature.

Midpoint rule. Let us consider the midpoint approximation of the integral in (25) give
by
1
/ dqV da ~ 35V (q(1/2)), (29)
0
whereq(1/2) is the midpoint value of, i.e., ate =1/2, such thag(1/2) = %[Ch + gzl
The resulting time-stepping scheme reads

hn

W[DDL p2] =0

O — 01—
(30)

P2 — P14+ hndgV (Q(1/2)) = O.
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Accordingly, the algorithmic form (30) coincides with the midpoint rule applied to th
considered nonlinear problem; i..;+ g/I sing=0. It is well-known that the midpoint
rule is not energy conserving in the nonlinear regime (see, e.g., &alg21]). We refer

to Section 4.1.3 for related numerical investigations.

Trapezoidal rule. Alternatively, the computation of the integral in (25) by means of th
trapezoidal rule yields

1
1
[ a0V da ~ Slaavi@n + iV @)l (31)
0

such that the corresponding time-stepping algorithm is given by

Pn

W[Pl-i- p2] =0

g2 — Q01 —
1 (32)
P2 — p1+ hné[aqv(ql) +9qV(Q2)] = 0.

It can be easily verified that the time-stepping scheme (32) coincides with the aver
acceleration method applied to the considered nonlinear problemi #eg,/| sinq=0.

It is well-known that the average acceleration method is not energy conserving in
nonlinear regime (see, e.g., Hughes [14]). We refer to Section 4.1.3 for related nume
investigations.

Gaussian quadrature.In analogy to customary spatial finite element formulations, th
numerical evaluation of the integral in (25) may be accomplished by choosing Gaus:
guadrature rules, such that

N

1
[aavda = avac, (33)
0

=1

wherew, andg are the weights and abscissae for [0, 1]. Recall that the Gauss rule of or
N; integrates exactly polynomials of degreg 2- 1. With increasing order of the employed
Gauss rule we expect an associated progressively energy conserving time-stepping scl
This expectation is confirmed by our numerical results documented in Section 4.1.3.

4.1.1. Numerical Implementation

Let us consider a typical subinterdal= [t,_1, t,] with the corresponding master element
onl =[0, 1]. In the case ok = 1 there are two nodes locatecsat 0 anda = 1. The nodal
values of the generalized displacements and momeita=dl, that isq; and p,, are given
guantities at time,_1. The nodal unknowns at timg, that isg, and p, in the local
description, may now be calculated by employing the time-stepping algorithm emana
from (25). Substitution from (2%)for p, into (25) leads to the residual

1
2ml?
R(@:) = 12 — ] ~ 2py + o [ 8V da =0 (34
n .
0

which is a nonlinear function af,. The iterative solution by means of Newton’s methoc
is summarized in Table Il. The evaluation of the integrals in Table Il may be accomplist
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TABLE Il
One-Dimensional Motion: Summary of Computations for One
Typical Time Step in the Casek = 1 Corresponding to Linear Finite
Elements in Time

Given: initial conditionsn,, p;; time step sizeh,; set iteration countei:= 1
Find: nodal unknows}, and p,

(@) Compute residual
1

Aa) = ot -] - zph [ ot
0

if }R(qg”)| > ¢ goto (b) else goto (c)

(b) Compute tangent
1

) 2mi? )
K(g)) = : +hn/M28§qV")da

n

0
Solve for incremeniq,

Ag = —K (o) R(q")

Update generalized displacement
(i+1)

Q@ = qg) + A
goto (a) withi =i + 1
(c) Update generalized momentum

Py = 2%2[(1;" —a] - m

Note.Circular pendulumV = —mgl cosg.

by using one of the quadratures discussed above. Accordingly, depending on the parti
quadrature rule, Table 1l comprises a family of time-stepping schemes associated witt
linear finite element formulatiork(= 1).

Remark4.1. In Table Il,e — 0is the numerical tolerance applied in the iterative solutio
procedure. In the case of exact quadrature, that is when formula (26) is used, the folloy
relation can be easily verified:

1
Hy — Hoo1 = P R(02)[02 — a1
n

Accordingly, algorithmic energy conservation is automatically attained when the itera
solution procedure has converged. This statement is a direct consequence of the ge
result (20).

4.1.2. Numerical Accuracy and Quadrature

Next we investigate the accuracy of the time-stepping schemes related to the li
finite element formulationk = 1). To this end we consider the error in the generalize
displacements and momenta, respectively, defined as the difference between the refe
and the approximate solutions,

€ (1) = g« (t) — an(t)
and

ep(t) = ps(t) — pn(t). (35)
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—4f

log[[leqll]

= midpoint quadrature
-10t === frapezoidal quadrature
-------- exact/more than 1 Gauss point

%5 -4 -3 -2 -1

FIG. 3. Linear elementsi{= 1): Computed mean-square norm of the error in the generalized displaceme
for different time-stepping schemes associated with specific quadrature rules.

As reference solutiorg, (t) and p, (t) we consider the numerical results obtained with ver
small, equally spaced, time steps of size=0.0001. Within the time interval =[0, T],
with T =8, we calculate the mean-square norm of the error according to

T 1/2
lellL,om = / Edty . (36)
0

Using exact quadraturen Table Il by employing formula (26) we obtain the numerical
results for the error in the generalized displacements depicted in Fig. 3. Additionally,
results obtained by applying thédpoint quadraturgthetrapezoidal ruleas well as théwo-
point Gaussian quadraturare also shown in Fig. 3. Accordingly, the rate of convergenc
of the investigated time-stepping schemes is two with respect to the mean-square n
The specific quadrature rule used has only minor influence on the numerical accurac
the related time-stepping scheme. Referring to Fig. 4, the same conclusions can be d
concerning the error in the generalized momenta.

4.1.3. Energy Conservation and Quadrature

As has been shown in Section 3.2, exact integration in Table Il implies exact algorith
conservation of the total energy. In this section we investigate how different quadrature r
effect the energy conservation property. Specifically we consider the midpoint, trapezoi
and Gaussian quadrature rules. Naturally, we expect progressively energy conserving
rithms with increasing accuracy of the used quadrature rules. We measure the error i
total energy according to

N
(S =Z|H*— Hnlhn, (37)
n=1

whereh, =t, — t,_; is the time step size;l,, is the calculated total energy at tiyg and
H. is the exact value of the constant total energy. As before the time interval of intere:
| =[O0, T], with T =8, andN denotes the number of (equally spaced) time steps.
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FIG. 4. Linear elementsk=1): Computed mean-square norm of the error in the generalized momenta
different time-stepping schemes associated with specific quadrature rules.

Exact quadrature. Our numerical experiments confirm the exact energy preservi
property of the developed algorithm, independent of the time step size, when exac
tegration is used by employing formula (26). Our computations rely on a floating pc
relative accuracy of 2.22— 16. Taking into account numerical round-off in the calcula
tion of (37), we consider the value log{] ~ —24 as the numerical limit corresponding to

ey = 0. Accordingly, the results obtained by using exact quadrature are represented b
horizontal straight line in Fig. 5.

Midpoint and trapezoidal rules.Figure 5 shows that application of the midpoint rule
(see formula (29)) or the trapezoidal rule (see formula (31)) leads to time-stepping sche

violating energy preservation of the underlying conservative dynamical system. Both que
ture rules yield a straight line of slope 2 in the log-log plot.

—

: B
.2, — midpoint quadrature | o7
[=} - trapezoidal quadrature [ .

o [ 2 Gausspoints (o
— 1 5 N R exact (round-off limit)

FIG. 5. Linear elementsk(=1): Computed error in the total energy for different time-stepping scheme
associated with specific quadrature rules.
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Gaussian quadrature.Using two Gauss points in (33) we obtained a straight line c
slope 4 as shown in the log-log plot in Fig. 5. Already three Gauss points essentially yi
results being indistinguishable from the exactintegration. In summary, with increasing o
of the quadrature rule the corresponding time-stepping scheme progressively inherit:
energy conserving property of the underlying conservative system.

4.2. Quadratic Elements

In this section we investigate the cdse 2 corresponding to quadratic trial functions.
Referring to Table | and (24), we obtain the particular finite element formulation given |

h
=501 + 402 + 0z — m—rl]z[pl—i-sz] =0

h
—01 — 402 + 503 — m—|“2[2pz +ps] =0
(38)

1

5 2 1 -

épl—gpz—éps—hn/MlaquazO
0

1
1 2 5 .
ép1+épz—éps—hn/MzaquOl=0,
0

with 94V =mglsing. Again h, =t, — t,_1, and the generalized displacemepntas well
as the generalized momentupa are given quantities at timig_;. The nodal unknowns
02, 03, and p, ps corresponding to the generalized displacements and momenta at t
th 1 andt, can be calculated by using the finite element formulation in (38). As in tt
casek =1 treated above, the additional specification of the quadrature employed for
evaluation of the integrals in (38) completely defines a particular time-stepping sche
Here we concentrate daaussian quadraturéor the computation of the integrals in (38).
In this connection it is interesting to note that using two Gauss points leads to a sch
which coincides with the two-stage Gauss Runge—Kutta method (see Hulme [16] anc
Appendix).

4.2.1 Numerical Implementation

Using (38) and (38), p2 and p; can be eliminated from (38and (38), such that we
obtain the residual vector

Mg — 01] — Py + hn fy M1dgV da
R(02, g3) = e 1o~ , (39)
h[30s — 802 + 501] + p1 + hy Jo M20qV da

which is a nonlinear function af, andgs. An outline of the iterative solution procedure
based on Newton’s method is given in Table Ill. The integrals in Table 11l may be evalua
by employing Gaussian quadrature, analogous to (33).

Remarld.2. Analogous to Remark 4.1 the energy conserving property of the alg
rithm in Table Il associated with exact quadrature can be verified by a straightforw.
calculation. Scalar multiplication of the residual ved®# R(0p, 03) =[Ry, Ro]" with the
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TABLE IlI
One-Dimensional Motion: Summary of Computations for One
Typical Time Step in the Casek =2 Corresponding to Quadratic
Finite Elements in Time

Given: initial conditionsq,, p;; time step sizeh,; set iteration countei:=1
mi?[ —q, —-p mi’f 0 1
R, = K= —
"= h, [5%]*[ B } "= {—8 3}
Find: vector of nodal unknowns
4 = [0z, gs]" andp = [pz, ps]”
(&) Compute residual
RO =R; +K,4" + R(zi)
where

1
T ~ .
RY =[R, R’] with R} =h, /M.aqv<'>da
0

if IRV| > ¢ goto (b) else goto (c)
(b) Compute tangent

KO =Ky +KY
where
) k(i) k(iJ v . )
Kg) = |:ktl) k:(llz):| with k:IJ) = h"' /M| M'Hlaqzqvm o
21 "N22

Solve for increments

A§ = _KOTIR®

Update generalized displacements
g9y = g9 + Ag

goto (a) withi =i +1

(c) Update generalized momenta
o_ mPrg 0 1
[ _Z—hn[% +4q, —5%]—§p1

ml?
hn

i) _

Ps° = [ 5 — 8ay’ +4Q1] + P1

Note.Circular pendulumV = —mgl cosqg.

vector fir, G,]" yields

—301 + 402 — O3
01 — 402 + 303

)

1
Hn - anl = h—R(Q2, Q3) : l
n

which can be regarded as the computational counterpart of the general expression (2
the algorithmic conservation of the Hamiltonian.

4.2.2 Numerical Accuracy and Quadrature

In this section we examine the numerical accuracy of the time-stepping algorithms
responding to quadratic finite elements in tigke= 2). In particular, we elaborate on the
influence of the employed (Gaussian) quadrature rule on the numerical accuracy o
associated time-stepping scheme. As in Section 4.1.2, we calculate the mean-square
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FIG.6. Quadratic element&{& 1): Computed mean-square norm of the error in the generalized displaceme
for specific time-stepping schemes associated with different Gaussian quadrature rules.

of the error in the generalized displacements and momenta (see Eqg. (36)). Again the
interval of interest id =[0, T], with T =8. The reference solution is obtained with lineat
elements incorporating exact quadrature and a time step size-00.0001.

The calculated results for the mean-square norm of the error in the generalized
placements are depicted in Fig. 6. Accordingly, the application of only one Gauss p
for the evaluation of the integrals in Table Il yields an associated time-stepping sche
with second-order accuracy. Already two Gauss points lead to a third-order accurate t
stepping scheme. Our numerical calculations show that the application of more than
Gauss points does not make any difference from the accuracy point of view.

4.2.3 Energy Conservation and Quadrature

In analogy to the cask=1 in Section 4.1.3 we examine how the employed Gaussic
guadrature influences the algorithmic energy conservatiok fo2. According to (20)
exact quadrature implies exact energy conservation of the associated time-stepping scl
Accordingly, with increasing order of the employed Gauss rule we expect a progressi
energy conserving time-stepping algorithm. This feature is verified in view of Fig. 7, whe
again the error in the energy according to (37) is shown. Accordingly, already four Ga
points yield results being almost indistinguishable from exact quadrature.

4.3. Cubic Elements

In this section we investigate the cdse 3 corresponding to cubic trial functions. Refer-
ring to (24) along with the corresponding valuesKbr(«), M, (), §,andp,, summarized
in Table I, one obtains the finite element formulation ket 3. Again the selection of a
particular quadrature rule for the evaluation of the integrals containing the potential
ergy function completely defines a specific time-stepping scheme. In the present cas
will concentrate on Gaussian quadrature. Interestingly, if three Gauss points are empl
one obtaines a scheme that coincides with the three-stage Gauss Runge—Kutta methc
Hulme [16] and the Appendix).
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FIG. 7. Quadratic elementk& 2): Computed error in the total energy for different time-stepping scheme
associated with specific quadrature rules.

4.3.1 Numerical Implementation

Within each consecutive subintervigl=[t,—_1, t,] one has to solve for the nodal un-
knownsq = [0y, 03, g4] and P =[p2, ps3, P4], While g, and p; are given quantities at time
tn_1. As before this task can be accomplished by eliminafing order to obtain three
nonlinear equations to be solved fprThe iterative solution procedure relies on Newton'
method and makes use of the residual vector given by

T [—301 + 30 + 305 — 3da] — P1+ ha Jy MadgV dr
R@) = 30, — 30z — 303 + 3] + hn fy M2V der . (40)

WP 70, + 150z — 1205 + 40] — Py + i [ MadqV der

|2
n

An outline of the iterative solution procedure for one typical time step is given in Table |
The integrals in Table IV may be evaluated by employing Gaussian quadrature, analo
to (33).

4.3.2 Numerical Accuracy and Quadrature

In this section we examine the numerical accuracy of the time-stepping algorithms cc
sponding to cubic finite elements in time=£ 3). In particular, we elaborate on the influence
of the employed (Gaussian) quadrature rule on the numerical accuracy of the assoc
time-stepping scheme. As in Section 4.1.2, we calculate the mean-square norm of the
in the generalized displacements and momenta (see Eq. (36)). Again the time interv
interest isl =[O0, T], with T =8. The reference solution is obtained with linear elemen
incorporating exact quadrature and a time step sizg ef 0.0001.

The calculated results for the mean-square norm of the error in the generalized disp
ments are depicted in Fig. 8. Thus using only one Gauss point is not adequate fol
cubic element since only second-order accuracy is attained. In contrast to that, the re
convergence of the time-stepping scheme associated with two Gauss points is alread
with respect to the mean-square norm. The application of three Gauss points improve
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TABLE IV
One-Dimensional Motion: Summary of Computations for One
Typical Time Step in the Casek =3 Corresponding to Cubic Finite
Elements in Time

Given: initial conditionsn,, p;; time step sizeh, set iteration counter:= 1

5
miz| 2% P ml? 2 : 3
Ri = h 30, + 0 , K= h -3 -3 3
" —7q —p "l15 -12 4

Find: vector of nodal unknowns
0= [0, 03, Ga]" andp = [Pz, Ps, Pa]”
(@) Compute residual
RO =R+ K.V + R(zi)

where
1

. . 9T . ~ .
Ry = [R", R, RY] with R" = h, /M,BqV"’da
0
if IRD| > & goto (b) else goto (c)
(b) Compute tangent

KO =K +KY

where
S 1

KS = [ ki) k3 ki | withkf) = h, / M My;192,V© dor
i k) K :

Solve for increments
A§ = —-KO RO
Update generalized displacements
gD =9 + Aq
goto (a) withi =i +1
(c) Update generalized momenta

0o _ m|2[ 175 n 13 O 7 o 5 <|):| 11
P = h 54 01 6q2 6q3 54q4 27p1
W _ mI2[7_4 20 4 , 10 O 4 16 <|)} + 1

Py = h 27q 3Q2 3% 27Q4 27p1
o mPro13. 27 27, 13

Py :h—n —?%4‘ ?QQ —?% +7Q4 — P

Note.Circular pendulumV = —mglcosq.

accuracy slightly while retaining fourth-order accuracy. Increasing the order of the nun
ical quadrature by employing more than three Gauss points apparently does not imp
the accuracy anymore.

4.3.3. Energy Conservation and Quadrature

In analogy to the cask=1 in Section 4.1.3 we examine how the employed Gau
sian quadrature influences the algorithmic energy conservatidr=@. Referring to (20)
exact quadrature implies exact energy conservation of the associated time-stepping scl
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FIG. 8. Cubic elementsk= 3): Computed mean-square norm of the error in the generalized displaceme
for specific time-stepping schemes associated with different Gaussian quadrature rules.

Accordingly, with increasing order of the employed Gauss rule we expect a progressi
energy conserving time-stepping algorithm. This feature is verified in view of Fig. 9, wh
again the error in the energy according to (37) is shown. Accordingly, already five Ga
points yield results being almost indistinguishable from exact quadrature.

5. SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

Next, we discuss computational aspects related to the general case of conservativ
namical systems with several degrees of freedom. The corresponding numerical simula
deal with a planar double pendulum. The general time finite element method in (15) ca

0 ; ; : .
5 /e/rg/o
- o 1 _'_0
— 1
o .-~ o)
=100 |ae 36 Pl 4
) PP A
g 0_—’ = 1 o *
~15} = o]
e +
0 -0 5G/P
\\\\\ #
O e _
_2 L L A i
—3.5 -2 -15 -1 -0.5 0
log[hy]

FIG. 9. Cubic elementsk=3): Computed error in the total energy for different time-stepping scheme
associated with specific quadrature rules.
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recast in the form

K 1 1
Z/M.deaiJ—th/M|VH(z)da=0, (41)
J=179 0
forl =1, ..., k. Here, use has been made of the matrices
== 5]
p
and
0 |
J= [—I 0} , (42)

where0 andl are thengos x Ngof Z€ro and identity matrices. Recall that the finite elemer
interpolations in (10) imply the expression

k+1

2) =Y Mi(@z. (43)
1=1

In general, exact calculation of the time integrﬂsMNH (2) dx is not possible. On the
other hand, referring to the treatment of algorithmic conservation properties in Section
in the autonomous case, algorithmic energy conservation is associated with the fulfilln
of the relation

K 1
H(z(1)) — H(z(0)) = Z/ M| VH(2) da - 2. (44)

=1 0
Application of standard quadrature formulas of the form

Ny

1
[V vH@ Y K @) H @ (45)
0

=1

will in general compromise the fulfillment of (44). The natural way to enforce algorithm
energy conservation is to increase the order of the integration rule. However, this

be prohibitively expensive. Alternatively, one can try to design reasonable nonstanc
guadrature formulas which exactly fulfill Eq. (44) and thus lead to exactly energy conserv
time-stepping schemes.

5.1. Nonstandard Quadrature Formula

The above-mentioned design of nonstandard quadrature rules is demonstrated ne
k=1, i.e., linear time finite elements. In this case Eq. (44) takes the form

1
H(z(D) — H(z(0)) = / VH@) da -2, (46)
0

with Z = z(1) — z(0). Now consider the nonstandard quadrature formula

VH(2) da =~ VH(2(1/2)) + EE

1 ~
/ H(z(1)) — H(z0) — VH(z(1/2)) - Zs (47)
0
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It can be easily verified that the energy conservation condition (46) is fulfilled by applyi
formula (47). Hence the associated time-stepping scheme exactly conserves total er
The specific form of (47) is in accordance with the discrete gradient method of Gonz:
[10]. There it has been shown that the discrete gradient appearing on the right-hand
of (47) is a second-order approximation to the exact gradient at the mid-p@dir).
Accordingly, (47) can be interpreted as perturbation of the standard mid-point rule.

Indeed, our numerical investigations in the next section confirm that the time-stepy
scheme resulting from the application of the nonstandard rule (47) retains the accu
of the mid-point rule. In addition to that, exact algorithmic energy conservation has b
observed.

5.2. Double Pendulum

The numerical example considered next deals with the planar double pendulum dep
in Fig. 10. The potential energy function can be written in the form

V(q) = —Mgl[2 cosq; + cosy], (48)

and the kinetic energy is given by
. 1, .
T(q, 9 = 54 M(@)d, (49)
with the generalized inertia matrix

2 cogq; — Op)

M2
M(@ = Ml cosg: — g2) 1

(50)

Accordingly, the generalized momentunpis- 9, T = M (g)d, and the Hamiltonian function
takes the form

1 -1
H@,p) =V(@Q) + SP M(@)p. (51)

The implementation of the cg(1) method for the double pendulum at hand is summar
in Table V.

FIG. 10. Double pendulum.
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TABLE V
Planar Double Pendulum: Summary of Compu-
tations for One Typical Time Step in the Casek=1
Corresponding to Linear Time Finite Elements

Given: initial conditionsz, = [gl}
1
time step sizeh,

set iteration counter:= 1
0 | I 0
= I=
J [4 0] [*0 I}

Find: nodal unknowng, = [EZ}
2

(@) Compute residual
1

RV =2 —z — hm]]/VH(z‘”)doz
0
if [IRV| > & goto (b)

(b) Compute tangent
1

KO =T- th/ M,VZH () dot
0

Update

Z(2i+1) _ Zg) _ K(')_lR(')

goto (a) withi =i +1

In the numerical example the parametdbts=1,| =1, andg =9.81 have been chosen.
The initial conditions are
_ /2
o= [n/z}

and

b= [8] | (52)

The results obtained with a time step sizégf 0.0001 serve as reference solution, denote
asz,.(t). Figures 11 and 12 contain a sequence of deformed configurationsforg 1.51
and 1226 < t < 13.66, respectively.

Figure 13 shows the computed error in the generalized displacements and moment
linear time finite elementk(= 1). We calculated the norm of the errordraccording to

T 12
el = / & Medt b | (53)

0

with e,(t) = z(t) — z.(t), scaling matrixM which has been set td =T, the Dgos X 2Ngot
identity matrix, andT =1.5. It can be seen that the nonstandard quadrature formu
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15 -1 05 0 05 1 15 2

FIG. 11. Double pendulum: Sequence of deformed configurations fort0< 1.51.

Eq. (47), (“modified quadrature” in Fig. 13), yields the same order of accuracy as the n
point rule. In this connection, using more than one Gauss point essentially yields the s
results.

Figure 14 illustrates the enforcement of algorithmic energy conservation by increa:
the order of the integration rule (féx, = 0.05 andk = 1). Accordingly, applying 3 Gauss
points prevents the blowup behavior exhibited by the mid-point rule (1 Gauss point), at
within the considered time interval 8 t < 15. Figure 14 can be interpreted as numericz
verification of the inherent energy conservation property of the time finite element met
under consideration.

Eventually, Fig. 15 shows the evolution of tgecomponent of the position vector ac-
cording toy; = —I cosq;.

FIG. 12. Double pendulum: Sequence of deformed configurations f@612 t < 13.66.
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FIG. 13. Double pendulum: Computed norm of the erroeifor linear time finite element& = 1).

1.5
—_ 1 Gauss point
--- 3 Gauss points
1 L R 5 Gauss points
> 0.5p
>
Q
[=
[
S
8
-0.5
-1t
-15 : -
0 5 10 15

time

FIG.14. Double pendulum: Increasing the number of Gauss points illustrates the inherent energy conserv
property of the time finite element method under consideratige=(0.05).
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- hn=0.01
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time

FIG. 15. Double pendulum: Component of position vector giveryby= — | cosq;.
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6. CONCLUSIONS

We have derived a new family of time-stepping schemes for classical mechanics b
upon the Petrov—Galerkin finite element approximation of Hamilton’s canonical equatic
Provided that a specific Hamiltonian function is given, the general time finite elem
formulation (15) can be used to generate particular time-stepping schemes. To this
essentially two steps have to be performed:

1. The selection of the polynomial degrdeef the Lagrangean shape functions specifie
the corresponding finite element formulation.

2. Anparticulartime-stepping scheme is finally obtained by the selection of the quadra
formula employed for the evaluation of the time integrals.

We saw that the time finite element method under consideration is inherently ene
conserving. In the case of linear elements (ke-,1) and one-dimensional motion the time
integrals can be exactly calculated, thus leading to a time-stepping scheme which ex
conserves the total energy. Interestingly, this scheme has been shown to be identical
the difference method due to Greenspan [12].

In more general circumstances exact integration is rarely feasible. Therefore, we in
tigated how the application of standard quadrature rules affects the energy conserv
property. Our numerical experiments relatedkte 1, 2, 3 confirmed that algorithmic en-
ergy conservation can be simply achieved by increasing the order of the quadrature rule
the other hand, in the general case of several degrees of freeddm-ghd/e have shown
that exact algorithmic energy conservation can be maintained by applying a honstan
quadrature formula. The design of this formula has been shown to be closely conne
with the discrete gradient method proposed by Gonzalez [10]. In this respect it woulc
desirable to generalize the construction of nonstandard quadrature formutas for

Despite the simplicity of the investigated model problem the system structure of the
cular pendulum is similar to more involved problems suchasody problems of classical
mechanics or nonlinear elastodynamics in semidiscrete form. Accordingly, the time fi
element approach advocated herein can be directly extended to dynamical systems \
in many applications the algorithmic conservation of energy and angular momentum t
out to be especially important (see [4] and [5]).

APPENDIX: RELATION WITH GAUSS RUNGE-KUTTA METHODS

Inthis appendix we verify the connection of the proposed time finite element formulatic
with Gauss Runge—Kutta methods. According to Section 5, application of the time fir
element method to the discretizationzt f(z), with f(z) = JVH (2), yields

k+1 L
> [ V@M@ dazs - by / | (@)f(2(e)) do = (A1)
J= 10
for 1 =1, ..., k. Employingk-point Gaussian quadrature formulas the integrals in (A.

are replaced by expressions of the form

k

> M @feE) w, (A2)

1=1
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where theg s denote the location of the quadrature points andutf®eare the associ-
ated weights. Then, taking into account (43), iz€) = Z',‘j M, (a)z, and the identity
Z‘le M, = 1, the system of equations in (A.1) can be recast in the form

k
2&)=2+hy Y ayfE)). i=1....k
= (A.3)

k
Zen=21+ho Y wif@&)),

i=1

which corresponds tolastage Runge—Kutta method (see, e.g., Stuart and Humphries [2:
The coefficientsy; in (A.3) are determined by the finite element formulation. For instanc
in the case of quadratic time finite elemerks<2) dealt with in Section 4.2, the general
method in (A.1) leads to

1
-5z, + 4z, + 23 — 6hn/ Ml(()l)f(Z(Ol)) doe =0
0

. (A.4)
—23 — 425 + 523 — 6h, / Ma(a)f(z(@)) da = O.
0
A straightforward calculation yields
aj = %{MZ@i){le@j) — Ma(&))} + 4M3(&)]. (A5)

Introducing the locationsg = [1 — 1/+/3]/2 andt; = [1 + 1/+/3]/2 of the quadrature points
and valuesv, = wo, = 1/2 of associated weights we obtain the coefficient matrix

1 1_ .3
4 4 6

[aj] = .
1y

(A.6)

[

1

4

Accordingly, the coefficients, &;, andw; give rise to the Butcher tableau of the two-stage
Gauss Runge—Kutta method (see, e.g., Hairer and Wanner [13]).

In the case of cubic time finite elemenks=£ 3) treated in section 4.3, the general methot
in (A.1) yields

1
—837; + 99z, — 973 — 724 — 1200, / M1(a)f(z()) da = O

—11zy — 272, + 2723 + 1124 — 30h, [ My(a)f(z(a)) do = O (A7)

'__o\“_‘o

7z, + 92, — 9923 + 8324 — 120h, / Mg(a)f(Z(Oﬂ)) do = 0.
0
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Proceeding as before, a straightforward calculation renders the relation

aj = %{Mz(sn{a?l\ﬁl@j) + 4M (&) 4+ M3(E))} 4+ M3(&){26M1(5))
+23M3(&j) — 10M3(&))} + 27Ma(&)). (A.8)

Substitution of the abscissae and associated weights,

: 1'1 3] 5
= — — —_ w —_ —
1= 2 5 1= 18
1 4

_ = _ - A.9

& 5 w2 =g (A.9)
: 1'1+\F' 5
3775 5| "“*T1g

corresponding to the Gaussian quadrature rul fei3, yields the coefficient matrix

In

5 2_ V15 5 _ J15
36 97 15 30

[aj] = | S + YL

w
(2]

V15
— 5| (A.10)

Slon

2
9
5 V15 2 /15 5
3%t 30 o5t 15 36

summary, the coefficienss, a;; , andw; are the elements of the Butcher tableau associat

with the three-stage Gauss Runge—Kutta method (see, e.g., Hairer and Wanner [13]).

A W DN P
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